Contents

Notices .. vii
Safety information .. ix
About this guide ... x

Chapter 1: Product introduction
1.1 System package contents ... 1-2
1.2 Serial number label .. 1-3
1.3 System specifications .. 1-4
1.4 Front panel features .. 1-6
1.5 Rear panel features .. 1-6
1.6 Internal features .. 1-7
1.7 LED information ... 1-8
 1.7.1 Front panel LEDs ... 1-8
 1.7.2 LAN (RJ-45) LEDs ... 1-9
 1.7.3 HDD status LED ... 1-10

Chapter 2: Hardware setup
2.1 Chassis cover .. 2-2
2.2 Central Processing Unit (CPU) .. 2-3
 2.2.1 Installing the CPU .. 2-3
 2.2.2 Installing the CPU heatsink and airduct ... 2-8
2.3 System memory .. 2-9
 2.3.1 Overview .. 2-9
 2.3.2 Memory Configurations ... 2-10
2.4 Hard disk drives ... 2-13
2.5 Expansion slot .. 2-15
 2.5.1 Installing an expansion card to the riser card bracket .. 2-15
 2.5.2 Configuring an expansion card .. 2-17
2.6 Cable connections ... 2-18
2.7 SATAII/SAS backplane cabling .. 2-19
2.8 Removable/optional components .. 2-20
 2.8.1 System fans .. 2-20
 2.8.2 Redundant power supply units .. 2-21
 2.8.3 Installing ASUS PIKE RAID card (optional) .. 2-23
Contents

Chapter 3: Installation options
3.1 Installing friction rail kit items .. 3-2
 3.1.1 Attaching the fixing latches to the server 3-2
 3.1.2 Mounting the server to the rack ... 3-5

Chapter 4: Motherboard information
4.1 Motherboard layout .. 4-2
4.2 Jumpers .. 4-4
4.3 Internal connectors ... 4-8
4.4 Internal LEDs .. 4-18

Chapter 5: BIOS setup
5.1 Managing and updating your BIOS .. 5-2
 5.1.1 ASUS CrashFree BIOS 3 utility ... 5-2
 5.1.2 ASUS EZ Flash 2 Utility .. 5-3
 5.1.3 BUPDATER utility .. 5-4
5.2 BIOS setup program ... 5-6
 5.2.1 BIOS menu screen ... 5-7
 5.2.2 Menu bar .. 5-7
 5.2.3 Menu items .. 5-8
 5.2.4 Submenu items .. 5-8
 5.2.5 Navigation keys ... 5-8
 5.2.6 General help .. 5-8
 5.2.7 Configuration fields ... 5-8
 5.2.8 Pop-up window ... 5-8
 5.2.9 Scroll bar .. 5-8
5.3 Main menu ... 5-9
 5.3.1 System Date [Day xx/xx/xxxx] ... 5-9
 5.3.2 System Time [xx:xx:xx] .. 5-9
5.4 Advanced menu .. 5-10
 5.4.1 CPU Configuration ... 5-10
 5.4.2 CPU Power Management Configuration 5-13
 5.4.3 Chipset Configuration ... 5-15
 5.4.4 PCH SATA Configuration ... 5-20
 5.4.5 PCH SCU Configuration .. 5-22
Contents

5.4.6 PCI Subsystem Settings ... 5-22
5.4.7 Onboard LAN Configuration .. 5-25
5.4.8 USB Configuration ... 5-27
5.4.9 Trusted Computing ... 5-28
5.4.10 ACPI Settings ... 5-29
5.4.11 WHEA Configuration ... 5-30
5.4.12 APM setting .. 5-30
5.4.13 Serial Port Console Redirection ... 5-31
5.4.14 ME Subsystem ... 5-34
5.4.15 Onboard Device Configuration ... 5-34
5.4.16 Runtime Error Logging ... 5-35

5.5 Server Mgmt menu ... 5-36
5.5.1 System Event Log ... 5-37
5.5.2 BMC network configuration ... 5-38

5.6 Event Logs menu ... 5-39
5.6.1 Change Smbios Event Log Settings .. 5-39

5.7 Boot menu .. 5-41

5.8 Monitor menu ... 5-43

5.9 Security menu .. 5-44

5.10 Tool menu .. 5-46

5.11 Exit menu .. 5-46

Chapter 6: RAID configuration

6.1 Setting up RAID ... 6-2
6.1.1 RAID definitions ... 6-2
6.1.2 Installing hard disk drives .. 6-3
6.1.3 Setting the RAID item in BIOS .. 6-3
6.1.4 RAID configuration utilities ... 6-3

6.2 LSI Software RAID Configuration Utility .. 6-4
6.2.1 Creating a RAID set .. 6-5
6.2.2 Adding or viewing a RAID configuration 6-11
6.2.3 Initializing the virtual drives ... 6-12
6.2.4 Rebuilding failed drives ... 6-16
6.2.5 Checking the drives for data consistency 6-18
6.2.6 Deleting a RAID configuration ... 6-21
Contents

6.2.7 Selecting the boot drive from a RAID set 6-22
6.2.8 Enabling WriteCache ... 6-23

6.3 Intel® Rapid Storage Technology enterprise SCU/SATA
Option ROM Utility .. 6-24
6.3.1 Creating a RAID set .. 6-26
6.3.2 Creating a Recovery set 6-27
6.3.3 Deleting a RAID set ... 6-29
6.3.4 Resetting disks to Non-RAID 6-30
6.3.5 Exiting the Intel® Rapid Storage Technology utility 6-31
6.3.6 Rebuilding the RAID ... 6-31
6.3.7 Setting the Boot array in the BIOS Setup Utility 6-33

6.4 Intel® Rapid Storage Technology enterprise Utility (Windows) 6-34
6.4.1 Creating a RAID set .. 6-35
6.4.2 Change Volume Type ... 6-37
6.4.3 Delete volume ... 6-38
6.4.4 Preferences ... 6-39

Chapter 7: Driver installation
7.1 RAID driver installation ... 7-2
7.1.1 Creating a RAID driver disk 7-2
7.1.2 Installing the RAID controller driver 7-4
7.2 Intel® chipset device software installation 7-15
7.3 Intel® Network Connections Software installation 7-17
7.4 VGA driver installation ... 7-20
7.5 Intel® C600 Series Chipset SATA RAID Drivers 7-23
7.6 Microsoft .NET Framework 3.5 SP1 7-24
7.7 Intel® Rapid Storage Technology enterprise 3.0 installation . 7-25
7.8 Intel® I350 Gigabit Adapters Driver installation 7-28
7.9 Management applications and utilities installation 7-32
7.9.1 Running the support DVD 7-32
7.9.2 Drivers menu ... 7-32
7.9.3 Utilities menu .. 7-33
7.9.4 Make disk menu ... 7-33
7.9.5 Contact information .. 7-33

ASUS contact information .. A-1
Notices

Federal Communications Commission Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

• This device may not cause harmful interference, and
• This device must accept any interference received including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with manufacturer's instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

• Reorient or relocate the receiving antenna.
• Increase the separation between the equipment and receiver.
• Connect the equipment to an outlet on a circuit different from that to which the receiver is connected.
• Consult the dealer or an experienced radio/TV technician for help.

WARNING! The use of shielded cables for connection of the monitor to the graphics card is required to assure compliance with FCC regulations. Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user’s authority to operate this equipment.

Canadian Department of Communications Statement

This digital apparatus does not exceed the Class B limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

This Class B digital apparatus complies with Canadian ICES-003.
REACH Information

Complying with the REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals) regulatory framework, we publish the chemical substances in our products at ASUS REACH website at http://csr.asus.com/english/REACH.htm.

ASUS Recycling/Takeback Services

ASUS recycling and takeback programs come from our commitment to the highest standards for protecting our environment. We believe in providing solutions for you to be able to responsibly recycle our products, batteries, other components as well as the packaging materials. Please go to http://csr.asus.com/english/Takeback.htm for detailed recycling information in different regions.

DO NOT throw the motherboard in municipal waste. This product has been designed to enable proper reuse of parts and recycling. This symbol of the crossed out wheeled bin indicates that the product (electrical and electronic equipment) should not be placed in municipal waste. Check local regulations for disposal of electronic products.

DO NOT throw the mercury-containing button cell battery in municipal waste. This symbol of the crossed out wheeled bin indicates that the battery should not be placed in municipal waste.
Safety information

Electrical Safety

• Before installing or removing signal cables, ensure that the power cables for the system unit and all attached devices are unplugged.
• To prevent electrical shock hazard, disconnect the power cable from the electrical outlet before relocating the system.
• When adding or removing any additional devices to or from the system, ensure that the power cables for the devices are unplugged before the signal cables are connected. If possible, disconnect all power cables from the existing system before you add a device.
• If the power supply is broken, do not try to fix it by yourself. Contact a qualified service technician or your dealer.

Operation Safety

• Any mechanical operation on this server must be conducted by certified or experienced engineers.
• Before operating the server, carefully read all the manuals included with the server package.
• Before using the server, ensure all cables are correctly connected and the power cables are not damaged. If any damage is detected, contact your dealer as soon as possible.
• To avoid short circuits, keep paper clips, screws, and staples away from connectors, slots, sockets and circuitry.
• Avoid dust, humidity, and temperature extremes. Place the server on a stable surface.

Lithium-Ion Battery Warning

CAUTION! Danger of explosion if battery is incorrectly replaced. Replace only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer’s instructions.

CD-ROM Drive Safety Warning

CLASS 1 LASER PRODUCT

Heavy System

CAUTION! This server system is heavy. Ask for assistance when moving or carrying the system.
About this guide

Audience
This user guide is intended for system integrators, and experienced users with at least basic knowledge of configuring a server.

Contents
This guide contains the following parts:

1. Chapter 1: Product Introduction
 This chapter describes the general features of the server, including sections on front panel and rear panel specifications.

2. Chapter 2: Hardware setup
 This chapter lists the hardware setup procedures that you have to perform when installing or removing system components.

3. Chapter 3: Installation options
 This chapter describes how to install optional components into the barebone server.

4. Chapter 4: Motherboard information
 This chapter gives information about the motherboard that comes with the server. This chapter includes the motherboard layout, jumper settings, and connector locations.

5. Chapter 5: BIOS setup
 This chapter tells how to change system settings through the BIOS Setup menus and describes the BIOS parameters.

6. Chapter 6: RAID configuration
 This chapter tells how to change system settings through the BIOS Setup menus. Detailed descriptions of the BIOS parameters are also provided.

7. Chapter 7: Driver installation
 This chapter provides instructions for installing the necessary drivers for different system components.
Conventions
To ensure that you perform certain tasks properly, take note of the following symbols used throughout this manual.

DANGER/WARNING: Information to prevent injury to yourself when trying to complete a task.

CAUTION: Information to prevent damage to the components when trying to complete a task.

IMPORTANT: Instructions that you MUST follow to complete a task.

NOTE: Tips and additional information to help you complete a task.

Typography

Bold text Indicates a menu or an item to select.

Italics Used to emphasize a word or a phrase.

<Key> Keys enclosed in the less-than and greater-than sign means that you must press the enclosed key.

Example: **<Enter>** means that you must press the Enter or Return key.

<Key1> + <Key2> + <Key3> If you must press two or more keys simultaneously, the key names are linked with a plus sign (+).

Example: **<Ctrl> + <Alt> + **

Command Means that you must type the command exactly as shown, then supply the required item or value enclosed in brackets.

Example: At the DOS prompt, type the command line: `format A:/S`

References
Refer to the following sources for additional information, and for product and software updates.

1. **ASUS Server Web-based Management (ASWM) user guide**
 This manual tells how to set up and use the proprietary ASUS server management utility.

2. **ASUS websites**
 The ASUS websites worldwide provide updated information for all ASUS hardware and software products. Refer to the ASUS contact information.
This chapter describes the general features of the chassis kit. It includes sections on front panel and rear panel specifications.
1.1 System package contents

Check your system package for the following items.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>RS920-E7/RS8</th>
<th>RS926-E7/RS8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chassis</td>
<td>ASUS R21B 2U Rackmount Chassis</td>
<td></td>
</tr>
<tr>
<td>Motherboard</td>
<td>ASUS Z9PX-Q32 Series Server Board</td>
<td></td>
</tr>
<tr>
<td>Component</td>
<td>1 x 1620W 80PLUS Platinum Redundant Power Supply</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x SATA Backplane with 8 x SATA Cables</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 x PCIe riser card</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x Front I/O Shield (FPB-AR14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x Power Supply Power Distribution Board</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 x System Fans (80mm)</td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td>1 x User’s Guide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x RS92x-E7/RS8 Series Support DVD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x Bag of Screws</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x Friction Rail Kit</td>
<td></td>
</tr>
<tr>
<td>Optional Items</td>
<td>CPU Heatsink</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti-virus CD</td>
<td></td>
</tr>
</tbody>
</table>

*ASUS System Web-based Management

* The system does not include a USB floppy drive. You may have to use a USB floppy drive when creating a SATA RAID driver disk. Refer to Chapter 7 for details.

If any of the above items is damaged or missing, contact your retailer.
1.2 Serial number label

Before requesting support from the ASUS Technical Support team, you must take note of the product’s serial number containing 14 characters such as xxS0xxxxxxxxx. See the figure below.

With the correct serial number of the product, ASUS Technical Support team members can then offer a quicker and satisfying solution to your problems.
1.3 System specifications

The ASUS RS920-E7/RS8 and RS926-E7/RS8 are servers featuring the ASUS Z9PX-Q32 Series server board. The server supports the Intel® Xeon® E5-4600 processor family, plus other latest technologies through the chipsets onboard.

<table>
<thead>
<tr>
<th>Model Name</th>
<th>RS926-E7/RS8</th>
<th>RS920-E7/RS8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor Support</td>
<td>4 x LGA 2011 socket</td>
<td>Intel® Xeon® Processor E5-4600 Product Family (up to 130W)</td>
</tr>
<tr>
<td>Core Logic</td>
<td>Intel® C602-A chipset</td>
<td>Intel® QuickPath Interconnect (QPI) 6.4/7.2/8.0 GT/s</td>
</tr>
<tr>
<td>Memory</td>
<td>Total Slots</td>
<td>32 (4-channel per CPU, 2 DIMM per channel)</td>
</tr>
<tr>
<td>Capacity</td>
<td>Maximum up to 1024GB (RDIMM)</td>
<td>Maximum up to 256GB (UDIMM)</td>
</tr>
<tr>
<td>Memory Type</td>
<td>DDR3 800/1066/1333/1600 RDIMM</td>
<td>DDR3 1066/1333 ECC UDIMM/Non-ECC UDIMM</td>
</tr>
<tr>
<td></td>
<td>DDR3 1066/1333 LR-DIMM</td>
<td></td>
</tr>
<tr>
<td>Memory Size</td>
<td>1GB, 2GB, 4GB, 8GB, 16GB, 32GB* (RDIMM)</td>
<td>1GB, 2GB, 4GB, 8GB* (UDIMM)</td>
</tr>
<tr>
<td></td>
<td>8GB, 16GB, 32GB* (LRDIMM)</td>
<td></td>
</tr>
<tr>
<td>Expansion Slots</td>
<td>Total PCI/PCI-X/PCI-E Slots</td>
<td>6 (PCI riser card required)</td>
</tr>
<tr>
<td>Slot type</td>
<td>Full-length 4 x PCI-E x16 (2 x Gen3 x16 Link or 4 x Gen3 x8 Link)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Half-length/Low-profile 2 x PCI-E x8 (Gen3 x8 Link)</td>
<td></td>
</tr>
<tr>
<td>Additional Slot</td>
<td>PIKE slot (PCI-E Gen3 x8 Link)</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>SATA Controller</td>
<td>Intel® C602-A Chipset</td>
</tr>
<tr>
<td></td>
<td>- 2 x SATA 6 Gb/s (black), 4 x SATA 3 Gb/s (black) AHCI port</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 4 x SATA 3 Gb/s (blue) SCU ports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intel® Rapid Storage Technology (for Windows only)</td>
<td>Supports RAID 0, RAID 1, RAID 10, and RAID 5</td>
</tr>
<tr>
<td></td>
<td>Supports software RAID 0, 1, & 10</td>
<td>LSI® Mega RAID (for Windows/Linux)</td>
</tr>
<tr>
<td></td>
<td>Optional: ASUS PIKE 2008 8-port SAS2 6G RAID card</td>
<td>Supports RAID 0, 1, 10, and RAID 5</td>
</tr>
<tr>
<td></td>
<td>ASUS PIKE 2008/IMR 8-port SAS2 6G RAID card</td>
<td>Supports software RAID 0, 1, & 10</td>
</tr>
<tr>
<td></td>
<td>ASUS PIKE 2108 8-port SAS2 6G H/W RAID card</td>
<td>LSI® Mega RAID (for Windows/Linux)</td>
</tr>
<tr>
<td>HDD Bays</td>
<td>8 x Hot-swappable 3.5” HDD Bays</td>
<td>(continued on the next page)</td>
</tr>
<tr>
<td>Model Name</td>
<td>RS926-E7/RS8</td>
<td>RS920-E7/RS8</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Networking</td>
<td>LAN Quad Port Intel Ethernet Controller i350 + 1 Management port</td>
<td></td>
</tr>
<tr>
<td>Infiniband</td>
<td>Single port Mellanox ConnectX-3 FDR InfiniteBand with QSFP Interface</td>
<td>N/A</td>
</tr>
<tr>
<td>Graphic</td>
<td>VGA Aspeed AST2300 16MB</td>
<td></td>
</tr>
<tr>
<td>Auxiliary Storage</td>
<td>Device Bay 1 x Slim-type Optical Device Bay</td>
<td></td>
</tr>
<tr>
<td>Onboard I/O</td>
<td>1 x Internal Serial Port</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>5 x RJ-45 ports (1 port for remote management)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 x USB 2.0 ports (2 x Front panel; 4 x Rear panel)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 x USB 3.0 ports (Rear)</td>
<td></td>
</tr>
<tr>
<td>OS Support</td>
<td>Windows® Server 2008 R2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Windows Server 2008 R2 Enterprise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Windows Server 2008 Enterprise 32/64-bit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RedHat Enterprise Linux AS5.6/6.0 32/64-bit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SuSE Linux Enterprise Server 11.2 32/64-bit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CentOS 5.6 32/64-bit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VMWare ESX4.1/ESXi4.1</td>
<td></td>
</tr>
<tr>
<td>Anti-virus Software</td>
<td>Optional Anti-Virus CD pack</td>
<td></td>
</tr>
<tr>
<td>Management Solution</td>
<td>Software ASWM Enterprise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Out of Band Management ASMB6-iKVM for KVM-over-IP onboard</td>
<td></td>
</tr>
<tr>
<td>Dimension (L x W x H)</td>
<td>75 cm x 44.4 cm x 8.8 cm (2U)</td>
<td></td>
</tr>
<tr>
<td>Net Weight (kg)</td>
<td>20 kg</td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td>1 + 1 Redundant 1620W 80PLUS Platinum Power Supply</td>
<td></td>
</tr>
<tr>
<td>Power Rating</td>
<td>Input: 100—140/180—240 Vac, 12—10A/10.5A—A, 50—60Hz Class1</td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>Operating Temperature: 10°C ~ 35°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-operating Temperature: -40°C ~ 70°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-operating Humidity: 20% ~ 90% (non-condensing)</td>
<td></td>
</tr>
</tbody>
</table>

Specifications are subject to change without notice.
1.4 Front panel features

The barebone server displays a simple yet stylish front panel with easily accessible features. The power and reset buttons, LED indicators, optical drive, and two USB ports are located on the front panel.

Refer to section 1.7.1 Front panel LEDs for the LED descriptions.

1.5 Rear panel features

The rear panel includes the expansion slots, system power socket, and rear fans. The middle part includes the I/O shield with openings for the rear panel connectors on the motherboard.

- The rear I/O ports do not appear on the rear panel if motherboard is not present.
- *The port is for ASUS ASMB6-iKVM controller card only.
1.6 Internal features

The barebone server includes the basic components as shown.

1. Redundant Power supply and power fan (hidden)
2. ASUS Z9PX-Q32 Server Board
3. System fans
4. SATA/SAS backplane (hidden)
5. Hot-swap HDD tray 1–8 (SAS and SATA)
6. Slim-type optical drive bay
7. Front I/O board (hidden)
8. PCI-E Expansion Boards (hidden)

The barebone server does not include a floppy disk drive. Connect a USB floppy disk drive to any of the USB ports on the front or rear panel if you need to use a floppy disk.

A protection film is pre-attached to the front cover before shipping. Please remove the protection film before turning on the system for proper heat dissipation.

*WARNING
HAZARDOUS MOVING PARTS
KEEP FINGERS AND OTHER BODY PARTS AWAY
1.7 LED information

1.7.1 Front panel LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Icon</th>
<th>Display status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power LED</td>
<td>![Power LED Icon]</td>
<td>ON</td>
<td>System power ON</td>
</tr>
<tr>
<td>Location LED</td>
<td>![Location LED Icon]</td>
<td>OFF</td>
<td>Normal status</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>Location switch is pressed (Press the location switch again to turn off)</td>
</tr>
<tr>
<td>Message LED</td>
<td>![Message LED Icon]</td>
<td>OFF</td>
<td>System is normal; no incoming event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>1. Without ASMB6-iKVM installed: CPU over-heated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. With ASMB6-iKVM installed: a hardware monitor event is indicated</td>
</tr>
<tr>
<td>LAN LEDs</td>
<td>![LAN LEDs Icon]</td>
<td>OFF</td>
<td>No LAN connection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinking</td>
<td>LAN is transmitting or receiving data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>LAN connection is present</td>
</tr>
<tr>
<td>HDD Access LED</td>
<td>![HDD Access LED Icon]</td>
<td>OFF</td>
<td>No activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinking</td>
<td>Read/write data into the HDD</td>
</tr>
</tbody>
</table>
1.7.2 LAN (RJ-45) LEDs

LAN5 LEDs

<table>
<thead>
<tr>
<th>ACT/LINK LED</th>
<th>SPEED LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Description</td>
</tr>
<tr>
<td>OFF</td>
<td>No link</td>
</tr>
<tr>
<td>ORANGE</td>
<td>Linked</td>
</tr>
<tr>
<td>BLINKING</td>
<td>Data activity</td>
</tr>
</tbody>
</table>

LAN1 to LAN4 LEDs

<table>
<thead>
<tr>
<th>ACT/LINK LED</th>
<th>SPEED LED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Description</td>
</tr>
<tr>
<td>OFF</td>
<td>No link</td>
</tr>
<tr>
<td>GREEN</td>
<td>Linked</td>
</tr>
<tr>
<td>BLINKING</td>
<td>Data activity</td>
</tr>
</tbody>
</table>
1.7.3 HDD status LED

<table>
<thead>
<tr>
<th>SATAII/SAS HDD LED Description</th>
<th>HDD Activity LED (Green)</th>
<th>HDD Status LED (Red)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>HDD not present</td>
<td>HDD not present</td>
</tr>
<tr>
<td>On</td>
<td>HDD present, no activity</td>
<td>HDD has failed and should be swapped immediately</td>
</tr>
<tr>
<td>Blinking</td>
<td>1. Read/write data from/into the SATAII/SAS HDD</td>
<td>1. RAID rebuilding</td>
</tr>
<tr>
<td></td>
<td>2. Locating (blinking with the HDD status LED)</td>
<td>2. Locating (blinking with the HDD activity LED)</td>
</tr>
</tbody>
</table>
This chapter lists the hardware setup procedures that you have to perform when installing or removing system components.
2.1 Chassis cover

Removing the rear cover

1. Locate and remove the side screws.

2. Loosen the two thumbscrews on the rear panel.

3. Firmly hold the cover and slide it toward the rear panel for about half an inch until it is disengaged from the chassis.

4. Lift the cover from the chassis.

5. To recover the rear cover, reverse step 1 to 4.

A protection film is pre-attached to the system cover before shipping. Please remove the protection film before turning on the system for proper heat dissipation.
2.2 Central Processing Unit (CPU)

The motherboard comes with a surface mount LGA2011 socket designed for the Intel® Xeon E5-4600 family processor.

- Upon purchase of the motherboard, ensure that the PnP cap is on the socket and the socket contacts are not bent. Contact your retailer immediately if the PnP cap is missing, or if you see any damage to the PnP cap/socket contacts/motherboard components. ASUS will shoulder the cost of repair only if the damage is shipment/transit-related.
- Keep the cap after installing the motherboard. ASUS will process Return Merchandise Authorization (RMA) requests only if the motherboard comes with the cap on the LGA2011 socket.
- The product warranty does not cover damage to the socket contacts resulting from incorrect CPU installation/removal, or misplacement/loss/incorrect removal of the PnP cap.

2.2.1 Installing the CPU

To install a CPU:

1. Locate the CPU socket on the motherboard.

Before installing the CPU, ensure that the socket box is facing towards you and the load lever is on your left.
2. Press the left load lever with your thumb (A), then move it to the left (B) until it is released from the retention tab.

To prevent damage to the socket pins, do not remove the PnP cap unless you are installing a CPU.

3. Slightly lift the load lever in the direction of the arrow.

4. Press the right load lever with your thumb (C), then move it to the right (D) until it is released from the retention tab. Lift the load lever in the direction of the arrow (E).
5. Push the left load lever (F) to lift the load plate (G).

6. Position the CPU over the socket, ensuring that the triangle mark is on the top-right corner of the socket.

The CPU fits in only one correct orientation. DO NOT force the CPU into the socket to prevent bending the connectors on the socket and damaging the CPU!

7. Remove the PnP cap (H) from the CPU socket and close the load plate (I).
8. Push down the right load lever (J), ensuring that the edge of the load plate is fixed by the lever (K).

9. Insert the right load lever under the retention tab.

10. Push down the left load lever (L), and then insert the lever under the retention tab (M).
11. Apply some Thermal Interface Material to the exposed area of the CPU that the heatsink will be in contact with, ensuring that it is spread in an even thin layer.

Some heatsinks come with pre-applied thermal paste. If so, skip this step.

The Thermal Interface Material is toxic and inedible. DO NOT eat it. If it gets into your eyes or touches your skin, wash it off immediately, and seek professional medical help.
2.2.2 Installing the CPU heatsink and airduct

To install the CPU heatsink:

1. Place the heatsink on top of the installed CPU, ensuring that the four fasteners match the holes on the motherboard.

2. Twist each of the four screws with a Philips (cross) screwdriver just enough to attach the heatsink to the motherboard. When the four screws are attached, tighten them one by one to completely secure the heatsink.

 To install the CPU heatsink:

 1. Place the heatsink on top of the installed CPU, ensuring that the four fasteners match the holes on the motherboard.

 2. Twist each of the four screws with a Philips (cross) screwdriver just enough to attach the heatsink to the motherboard. When the four screws are attached, tighten them one by one to completely secure the heatsink.

 Tighten the four heatsink screws in a diagonal sequence.

CPU Installation Sequence:

<table>
<thead>
<tr>
<th>CPU1 Configuration</th>
<th>CPU1 Socket</th>
<th>CPU2 Socket</th>
<th>CPU3 Socket</th>
<th>CPU4 Socket</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Processor</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual Processors</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quad Processors</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Apply some Thermal Interface Material to the exposed area of the CPU that the heatsink will be in contact with, ensuring that it is spread in an even thin layer. Some heatsinks come with pre-applied Thermal Interface Material. If so, skip this step.
2.3 System memory

2.3.1 Overview

The motherboard comes with thirty-two (32) Double Data Rate 3 (DDR3) Dual Inline Memory Modules (DIMM) sockets.

The figure illustrates the location of the DDR3 DIMM sockets:
Memory Configurations

You may install 1GB/2GB/4GB/8GB/16GB/32GB Registered or 1GB/2GB/4GB/8GB Unbuffered with ECC/Non-ECC DDR3 DIMMs into the DIMM sockets using the memory configurations in this section.

Memory population table

For UDIMM, RDIMM and LRDIMM (Single Rank, Dual Ranks, Quad rank)

CPU1 Configuration

<table>
<thead>
<tr>
<th>DIMMs</th>
<th>A2</th>
<th>A1</th>
<th>B2</th>
<th>B1</th>
<th>C2</th>
<th>C1</th>
<th>D2</th>
<th>D1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 DIMMs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 DIMMs</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 DIMMs</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 DIMMs</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>

CPU1 + CPU2 Configuration

<table>
<thead>
<tr>
<th>DIMMs</th>
<th>A2</th>
<th>A1</th>
<th>B2</th>
<th>B1</th>
<th>C2</th>
<th>C1</th>
<th>D2</th>
<th>D1</th>
<th>E2</th>
<th>E1</th>
<th>F2</th>
<th>F1</th>
<th>G2</th>
<th>G1</th>
<th>H2</th>
<th>H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 DIMMs</td>
<td></td>
</tr>
<tr>
<td>4 DIMMs</td>
<td></td>
</tr>
<tr>
<td>6 DIMMs</td>
<td></td>
</tr>
<tr>
<td>8 DIMMs</td>
<td></td>
</tr>
<tr>
<td>10 DIMMs</td>
<td></td>
</tr>
<tr>
<td>12 DIMMs</td>
<td></td>
</tr>
<tr>
<td>14 DIMMs</td>
<td></td>
</tr>
<tr>
<td>16 DIMMs</td>
<td></td>
</tr>
</tbody>
</table>

CPU1 + CPU2 + CPU3 + CPU4 Configuration

<table>
<thead>
<tr>
<th>DIMMs</th>
<th>A2</th>
<th>I1</th>
<th>J2</th>
<th>J1</th>
<th>K2</th>
<th>K1</th>
<th>L2</th>
<th>L1</th>
<th>M2</th>
<th>M1</th>
<th>N2</th>
<th>N1</th>
<th>O2</th>
<th>O1</th>
<th>P2</th>
<th>P1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 DIMMs</td>
<td></td>
</tr>
<tr>
<td>8 DIMMs</td>
<td></td>
</tr>
<tr>
<td>12 DIMMs</td>
<td></td>
</tr>
<tr>
<td>16 DIMMs</td>
<td></td>
</tr>
<tr>
<td>20 DIMMs</td>
<td></td>
</tr>
<tr>
<td>24 DIMMs</td>
<td></td>
</tr>
<tr>
<td>28 DIMMs</td>
<td></td>
</tr>
<tr>
<td>32 DIMMs</td>
<td></td>
</tr>
</tbody>
</table>

2.3.2 Memory Configurations

You may install 1GB/2GB/4GB/8GB/16GB/32GB Registered or 1GB/2GB/4GB/8GB Unbuffered with ECC/Non-ECC DDR3 DIMMs into the DIMM sockets using the memory configurations in this section.

Memory population table

For UDIMM, RDIMM and LRDIMM (Single Rank, Dual Ranks, Quad rank)
2.3.3 Installing a DIMM on a single clip DIMM socket

1. Unlock a DIMM socket by pressing the retaining clip outward.
2. Align a DIMM on the socket such that the notch on the DIMM matches the DIMM slot key on the socket.

![DIMM slot key](image)

3. Hold the DIMM by both of its ends, then insert the DIMM vertically into the socket. Apply force to both ends of the DIMM simultaneously until the retaining clip snaps back into place, and the DIMM cannot be pushed in any further to ensure proper sitting of the DIMM.

![Locked Retaining Clip](image)

A DIMM is keyed with a notch so that it fits in only one direction. DO NOT force a DIMM into a socket in the wrong direction to avoid damaging the DIMM.

![DIMM notch](image)

3. Hold the DIMM by both of its ends, then insert the DIMM vertically into the socket. Apply force to both ends of the DIMM simultaneously until the retaining clip snaps back into place, and the DIMM cannot be pushed in any further to ensure proper sitting of the DIMM.

![Locked Retaining Clip](image)

Always insert the DIMM into the socket VERTICALLY to prevent DIMM notch damage.

- To install two or more DIMMs, refer to the user guide bundled in the motherboard package.
- Refer to the user guide for qualified vendor lists of the memory modules.

Removing a DIMM from a single clip DIMM socket

1. Press the retaining clip outward to unlock the DIMM.
2. Remove the DIMM from the socket.

![Support DIMM lightly](image)

Support the DIMM lightly with your fingers when pressing the retaining clips. The DIMM might get damaged when it flips out with extra force.
2.3.4 Installing a DIMM on a double-clip DIMM socket

Ensure to unplug the power supply before adding or removing DIMMs or other system components. Failure to do so may cause severe damage to both the motherboard and the components.

1. Press the retaining clips outward to unlock a DIMM socket.
2. Align a DIMM on the socket such that the notch on the DIMM matches the break on the socket.
3. Firmly insert the DIMM into the socket until the retaining clips snap back in place and the DIMM is properly seated.

A DIMM is keyed with a notch so that it fits in only one direction. DO NOT force a DIMM into a socket to avoid damaging the DIMM.

Removing a DIMM from a double-clip DIMM socket

1. Simultaneously press the retaining clips outward to unlock the DIMM.
2. Remove the DIMM from the socket.

Support the DIMM lightly with your fingers when pressing the retaining clips. The DIMM might get damaged when it flips out with extra force.
2.4 Hard disk drives

The system supports eight hot-swap SATAII/SAS hard disk drives. The hard disk drive installed on the drive tray connects to the motherboard SATAII/SAS ports via the SATAII/SAS backplane.

To install a hot-swap SATAII/SAS HDD:

1. Release a drive tray by pushing the spring lock to the right, then pulling the tray lever outward. The drive tray ejects slightly after you pull out the lever.

2. Firmly hold the tray lever and pull the drive tray out of the bay.

3. Take note of the drive tray holes. Each side has three holes to fit different types of hard disk drives. Use two screws on each side to secure the hard disk drive.

4. Place a SATAII/SAS hard disk drive on the tray, then secure it with four screws.
5. Carefully insert the drive tray and push it all the way to the depth of the bay until just a small fraction of the tray edge protrudes.

6. Push the tray lever until it clicks, and secures the drive tray in place. The drive tray is correctly placed when its front edge aligns with the bay edge.

7. Repeat steps 1 to 6 if you wish to install a second SATAII/SAS drive.
2.5 Expansion slot

2.5.1 Installing an expansion card to the riser card bracket

The barebone server comes with a riser card bracket. You need to remove the bracket if you want to install PCI Express x16 expansion cards.

To install a PCI Express x16 card

1. Loosen the screws of the riser card bracket.

2. Place the riser card bracket on a flat and stable surface, and then remove the screw from the slot bay.

3. Loosen the screw of rear end bracket and remove it.

4. Install a PCI Express x16 card to the bracket as shown, and then secure the card with a screw.
5. Firmly hold the bracket, and then press it down to the slot of the motherboard.

6. Secure the screw in front of the GPU computing module bracket.
2.5.2 Configuring an expansion card

After installing the expansion card, configure it by adjusting the software settings.

1. Turn on the system and change the necessary BIOS settings, if any. See Chapter 5 for information on BIOS setup.
2. Assign an IRQ to the card. Refer to the tables on the next page.
3. Install the software drivers for the expansion card.

Standard Interrupt assignments

<table>
<thead>
<tr>
<th>IRQ</th>
<th>Priority</th>
<th>Standard function</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>System Timer</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>Keyboard Controller</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>Programmable Interrupt</td>
</tr>
<tr>
<td>3*</td>
<td>11</td>
<td>Communications Port (COM2)</td>
</tr>
<tr>
<td>4*</td>
<td>12</td>
<td>Communications Port (COM1)</td>
</tr>
<tr>
<td>5*</td>
<td>13</td>
<td>--</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>Floppy Disk Controller</td>
</tr>
<tr>
<td>7*</td>
<td>15</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>System CMOS/Real Time Clock</td>
</tr>
<tr>
<td>9*</td>
<td>4</td>
<td>ACPI Mode when used</td>
</tr>
<tr>
<td>10*</td>
<td>5</td>
<td>IRQ Holder for PCI Steering</td>
</tr>
<tr>
<td>11*</td>
<td>6</td>
<td>IRQ Holder for PCI Steering</td>
</tr>
<tr>
<td>12*</td>
<td>7</td>
<td>PS/2 Compatible Mouse Port</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>Numeric Data Processor</td>
</tr>
<tr>
<td>14*</td>
<td>9</td>
<td>Primary IDE Channel</td>
</tr>
<tr>
<td>15*</td>
<td>10</td>
<td>Secondary IDE Channel</td>
</tr>
</tbody>
</table>

* These IRQs are usually available for ISA or PCI devices.
2.6 Cable connections

- The bundled system cables are pre-connected before shipment. You do not need to disconnect these cables unless you will remove pre-installed components to install additional devices.
- Refer to Chapter 4 for detailed information on the connectors.

Pre-connected system cables
1. 24-pin SSI power connector (from power supply to motherboard)
2. 8-pin SSI power connector (from power supply to motherboard)
3. System fan connectors (from motherboard FRNT_FAN1, FRNT_FAN2 FRNT_FAN3, FRNT_FAN4, and FRNT_FAN5 to system fans)
4. USB connector (from motherboard to front I/O board)
5. Power Supply SMBUS connector
6. Auxiliary Panel connector (from motherboard to front I/O board)
7. Panel connector (from motherboard to front I/O board)
8. SATA connectors (from motherboard to SATAII/SAS backplane board)
9. SAS connector (from motherboard to SATAII/SAS backplane board)
10. SGPIO 1 (Intel RAID)
11. PSGPIO 1,2 (LSI PIKE RAID)
2.7 SATAII/SAS backplane cabling

Connects a 8-pin plug from power supply

Connects to the Intel® C602 SATA or PIKE SATA / SAS connectors on the motherboard

Onboard SGPIO1 connects to BP the SGPIO1 connector to support Intel® RST SGPIO function

PSGPIO1/2: Connects to BP the SGPIO2/3 connector to support Intel® SCU RAID, LSI RAIO SGPIO function.

J1: Connects to the power connector of the slim-type optical drive

SGPIO_SEL: Set to pin 1-2 to enable onboard C602 SATA SGPIO function (default) or set to pin 2-3 enable optional PIKE SAS RAID, Intel® SCU SGPIO function.
2.8 Removable/optional components

You may need to remove previously installed system components when installing or removing system devices. Or you may need to install the optional components into the system. This section tells how to remove/install the following components:

1. System fans
2. Redundant power supply units
3. ASUS PIKE RAID card (optional)

Ensure that the system is turned off before removing any components.

2.8.1 System fans

To uninstall the system fans

1. Disconnect the system fan cable from the fan connector on the motherboard.

2. Carefully remove the system fan cable from the cable holder.
3. Lift the fan, and then set aside.
4. Repeat steps 1 to 3 to uninstall the other system fans.

To reinstall the system fans
1. Insert the fan into the fan cage.
 The airflow directional arrow on the fan side should point towards the system rear panel.
2. Insert the system fan cable into the cable holder, then connect the cable to the fan connector on the motherboard.

2.8.2 Redundant power supply units

To remove the power supply unit (PSU)
1. Lift up the PSU lever.
2. Hold the PSU lever and press the PSU latch.

3. Firmly pull the PSU out of the system chassis.

To install a second PSU

1. Insert the PSU into the empty PSU bay.

2. Hold the PSU lever and press the PSU latch. Firmly insert the PSU into the server chassis.
If you install two power supply units in the system, you can switch the working behavior of the two PSUs between 1+1 jumper mode and 2+0 jumper mode.

1+1 jumper mode: If the total power consumption of the system is less than 1400W, the system can be booted using one PSU and the PSU hot-swap feature is supported. If the total power consumption of the system exceeds 1400W, the maximum output power of the PSUs can reach to 2800W with PSU hot-swap feature disabled, and the system shuts down if any of the PSUs is removed.

2+0 jumper mode: The system can be booted only when two PSUs are installed. The maximum output power of the PSUs can reach to 2800W with PSU hot-swap feature disabled, and the system shuts down if any of the PSUs is removed.

The output power varies with different input voltages. Refer to the table below for details.

<table>
<thead>
<tr>
<th>SKU</th>
<th>Input Voltage</th>
<th>Max. Output Power (Watt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1620W</td>
<td>100V—140V</td>
<td>1100W</td>
</tr>
<tr>
<td></td>
<td>180V—240V</td>
<td>1400W</td>
</tr>
</tbody>
</table>

2.8.3 Installing ASUS PIKE RAID card (optional)

Follow the steps below to install an optional ASUS RAID card on your motherboard. If you install the PIKE 2108 Series SAS RAID card, follow steps 1 and 2 to remove the outer heatsink on RAID card.

1. Remove the two screws that secure the heatsink bracket on the back of the SAS RAID card.
2. Remove the four screws that secure the outer heatsink on the front of the SAS RAID card.

 DO NOT remove the inner heatsink from the SAS RAID card.

3. Remove the data cables connected to the SATA connectors on the motherboard.

4. Locate the PIKE RAID card slot on the motherboard, then remove the screw beside the PIKE slot.
5. Align the golden fingers of the RAID card with the PIKE RAID card slot then insert the RAID card into the PIKE RAID card slot. Ensure that it is completely seated in place, then secure the PIKE card with the screw you removed earlier.

6. Connect the data cables in numerical order, from SATA1-5 to the SAS connectors labeled PSAS1-4 (Blue) and 5 (Black) on the motherboard.
This chapter describes how to install the optional components and devices into the barebone server.
3.1 Installing friction rail kit items

Your friction rail kit package contains:

- One pair of rack rails
- One pair of fixing latches
- 4 latch screws, 4 rail screws and 4 rail washers

3.1.1 Attaching the fixing latches to the server

Refer to the figures below for the locations to attach the two fixing latches to the two sides of the server with four screws.
1. Select a 1U space on the rack where you want to install the rack rail. A 1U space consists of three square mounting holes with two thin lips on the top and the bottom, as shown in the right figure.

2. Adjust the rack rail to fit the depth of the rack.

3. From inside the rack, place the rear rail hook on the bottom thin lip of the rear mounting hole, and then place the front rail hook on the bottom thin lip of the front mounting hole, as shown in the right figure.

4. Secure the front and rear ends of the rail with two rack screws and washers.

5. Repeat step 1 to 4 to attach the rack rail on the other side of the rack.
6. When mounting the server to the rack, ensure to include the side knots on the two sides of the server in the rack rail holders, as shown in the right figure.

Do not install the rail kit in the following situation:

- DO NOT place the rail hook on a thick lip of the mounting hole.
- DO NOT install the rail to the outer side of the server rack.
3.1.2 Mounting the server to the rack

To mount the server to the rack:

1. Align the server rails with the rack rails, then push the server all the way to the depth of the rack.
2. Drive two screws on both mounting ears to secure the server in place.

To uninstall the server from the rack:

1. Remove the screws secured on the mounting ears.
2. Hold the mounting ears, then pull the server from the rack.

Remember to press the latches on both sides to release the server from the rack.
This chapter includes the motherboard layout, and brief descriptions of the jumpers and internal connectors.
4.1 Motherboard layout

Layout contents

<table>
<thead>
<tr>
<th>Jumpers</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clear RTC RAM (CLRTC1)</td>
<td>4-4</td>
</tr>
<tr>
<td>2. VGA controller setting (3-pin VGA_SW1)</td>
<td>4-5</td>
</tr>
<tr>
<td>3. LSI MegaRAID or Intel RSTe selection jumper (3-pin RAID_SEL1)</td>
<td>4-5</td>
</tr>
<tr>
<td>4. LAN controller setting (3-pin LAN_SW1)</td>
<td>4-6</td>
</tr>
<tr>
<td>5. ME firmware force recovery setting (3-pin ME_RCVR1)</td>
<td>4-6</td>
</tr>
<tr>
<td>6. DIMM thermal trip Setting (3-pin DIMMTRIP1)</td>
<td>4-7</td>
</tr>
<tr>
<td>7. BMC Setting (3-pin BMC_SW1)</td>
<td>4-7</td>
</tr>
</tbody>
</table>
Internal connectors

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Serial ATA 6.0/3.0 Gb/s connectors (7-pin SATA6G_1-2 [black]) (7-pin SATA3G_3-6 [black])</td>
<td>4-8</td>
</tr>
<tr>
<td>2.</td>
<td>ISAS connectors</td>
<td>4-9</td>
</tr>
<tr>
<td>3.</td>
<td>PSAS connectors</td>
<td>4-9</td>
</tr>
<tr>
<td>4.</td>
<td>USB connectors (10-1 pin USB56, A-Type USB10)</td>
<td>4-10</td>
</tr>
<tr>
<td>5.</td>
<td>Hard disk activity LED connector (4-pin HDLED1)</td>
<td>4-10</td>
</tr>
<tr>
<td>6.</td>
<td>CPU and front fan connectors (4-pin CPU_FAN1-2, FRNT_FAN1–5)</td>
<td>4-11</td>
</tr>
<tr>
<td>7.</td>
<td>Serial General Purpose Input/Output connectors (6-1 pin SGPIO1, 8-1 pin PSGPIO 1/2 and ISGPIO1)</td>
<td>4-12</td>
</tr>
<tr>
<td>8.</td>
<td>Serial port connector (10-1 pin COM1)</td>
<td>4-13</td>
</tr>
<tr>
<td>9.</td>
<td>TPM connector (20-1 pin TPM1)</td>
<td>4-13</td>
</tr>
<tr>
<td>10.</td>
<td>Power Supply SMBus connector (6-1 pin PSUSMB1)</td>
<td>4-14</td>
</tr>
<tr>
<td>11.</td>
<td>EATX power connectors (24-pin ATXPWR1, 8-pin ATX12V1)</td>
<td>4-15</td>
</tr>
<tr>
<td>12.</td>
<td>System panel connector (20-1 pin PANEL1)</td>
<td>4-16</td>
</tr>
<tr>
<td>13.</td>
<td>Auxiliary panel connector (20-2pin AUX_PANEL1)</td>
<td>4-17</td>
</tr>
</tbody>
</table>

Internal LEDs

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Standby Power LED (SB_PWR1)</td>
<td>4-18</td>
</tr>
<tr>
<td>2.</td>
<td>DIMM Error LED (ERR_DIMM)</td>
<td>4-18</td>
</tr>
<tr>
<td>3.</td>
<td>CPU warning LED (ERR_CPU1/2/3/4)</td>
<td>4-19</td>
</tr>
<tr>
<td>4.</td>
<td>CATT Error LED (CATTERR_LED1)</td>
<td>4-19</td>
</tr>
<tr>
<td>5.</td>
<td>Baseboard Management Controller LED (BMC_LED1)</td>
<td>4-20</td>
</tr>
<tr>
<td>6.</td>
<td>Q-Code LED (LED1_LED2)</td>
<td>4-20</td>
</tr>
</tbody>
</table>
4.2 Jumpers

1. **Clear RTC RAM (CLRTC1)**

 This jumper allows you to clear the Real Time Clock (RTC) RAM in CMOS. You can clear the CMOS memory of date, time, and system setup parameters by erasing the CMOS RTC RAM data. The onboard button cell battery powers the RAM data in CMOS, which include system setup information such as system passwords.

 To erase the RTC RAM:

 1. Turn OFF the computer and unplug the power cord.
 2. Move the jumper cap from pins 1–2 (default) to pins 2–3. Keep the cap on pins 2–3 for about 5–10 seconds, then move the cap back to pins 1–2.
 3. Plug the power cord and turn ON the computer.
 4. Hold down the `` key during the boot process and enter BIOS setup to re-enter data.

 Except when clearing the RTC RAM, never remove the cap on CLRTC jumper default position. Removing the cap will cause system boot failure!

 If the steps above do not help, remove the onboard battery and move the jumper again to clear the CMOS RTC RAM data. After the CMOS clearance, reinstall the battery.
2. **VGA controller setting (3-pin VGA_SW1)**

 This jumper allows you to enable or disable the onboard VGA controller. Set to pins 1–2 to activate the VGA feature.

3. **LSI MegaRAID or Intel RSTe selection jumper (3-pin RAID_SEL1)**

 This jumper allows you to select the PCH SATA RAID mode to use LSI MegaRAID software or Intel® Rapid Storage Technology enterprise 3.0 RAID. Place the jumper caps over pins 1–2 if you want to use the LSI MegaRAID software RAID Utility (default); otherwise, place the jumper caps to pins 2–3 to use the Intel® Rapid Storage Technology Enterprise Option ROM Utility.
4. **LAN controller setting (3-pin LAN_SW1)**

These jumpers allow you to enable or disable the onboard Intel® i350 Gigabit LAN controllers. Set to pins 1-2 to activate the Gigabit LAN feature.

![Z9PX-Q32 LAN setting diagram]

5. **ME firmware force recovery setting (3-pin ME_RCVR1)**

This jumper allows you to force Intel Management Engine (ME) boot from recovery mode when ME become corrupted.

![Z9PX-Q32 ME_RCVR setting diagram]
6. **DIMM thermal trip Setting (3-pin DIMMTRIP1)**
 This jumper allows you to enable (default) or disable DIMM thermal trip.

7. **BMC Setting (3-pin BMC_SW1)**
 This jumper allows you to enable (default) or disable the Baseboard Management Controller.
4.3 Internal connectors

1. Serial ATA 6.0/3.0 Gb/s connectors
 (7-pin SATA6G_1-2 [black])
 (7-pin SATA3G_3-6 [black])

 Supported by the Intel® C602 Chipset, these connectors are for the Serial ATA signal cables for Serial ATA hard disk drives that allows up to 6Gb/s of data transfer rate.

 If you installed Serial ATA hard disk drives, you can create a RAID 0, RAID 1, RAID 10, or RAID 5 configuration.

 The actual data transfer rate depends on the speed of Serial ATA hard disks installed.
2. **ISAS connectors**
Supported by the Intel® C602 Chipset. ISAS 1-4 connectors can connect to serial ATA 3Gb/s hard disk drives.

 The actual data transfer rate depends on the speed of SATA hard disks installed.

3. **PSAS connectors (PIKE required)**
SAS connector - PSAS connectors are for the SAS signal cables for SAS hard disk drives that allows up to 6Gb/s of data transfer rate.

 If you installed SAS hard disk drives, you can create a RAID 0, RAID 1, RAID 10, or RAID 5 configuration.

 The actual data transfer rate depends on the speed of SAS hard disks installed.

4. **USB connectors (10-1 pin USB56, A-Type USB10)**

These connectors are for USB 2.0 ports. Connect the USB module cable to connector USB56, then install the module to a slot opening at the back of the system chassis. These USB connectors comply with USB 2.0 specification that supports up to 480 Mbps connection speed.

![Z9PX-Q32 USB2.0 connectors](image)

5. **Hard disk activity LED connector (4-pin HDLED1)**

This LED connector is for the storage add-on card cable connected to the SATA or SAS add-on card. The read or write activities of any device connected to the SATA or SAS add-on card causes the front panel LED to light up.

![Z9PX-Q32 Hard disk activity LED connector](image)
6. CPU and front fan connectors (4-pin CPU_FAN1-2, FRNT_FAN1–5)

The fan connectors support cooling fans. Connect the fan cables to the fan connectors on the motherboard, ensuring that the black wire of each cable matches the ground pin of the connector.

- DO NOT forget to connect the fan cables to the fan connectors. Insufficient air flow inside the system may damage the motherboard components.
- These are not jumpers! DO NOT place jumper caps on the fan connectors!
- All fans feature the ASUS Smart Fan technology.
7. **Serial General Purpose Input/Output connectors**

(6-1 pin SGPIO1, 8-1 pin PSGPIO 1/2 and ISGPIO1)

The SGPIO 1 connectors are used for the Intel Rapid Storage Technology Enterprise SGPIO interface that controls the LED pattern generation, device information and general purpose data.

The PSGPIO 1/2 connectors are used for PIKE card.

The ISGPIO 1 connector is for SATA connectors—ISAS connectors.
8. **Serial port connector (10-1 pin COM1)**

These connectors are for the serial (COM) ports. Connect the serial port module cable to one of these connectors, then install the module to a slot opening at the back of the system chassis.

![Z9PX-Q32 Serial port (COM1) connector](image)

9. **TPM connector (20-1 pin TPM1)**

This connector supports a Trusted Platform Module (TPM) system, which can securely store keys, digital certificates, passwords, and data. A TPM system also helps enhance network security, protects digital identities, and ensures platform integrity.

![Z9PX-Q32 TPM Connector](image)
10. **Power Supply SMBus connector (6-1 pin PSUSMB1)**

This connector allows you to connect SMBus (System Management Bus) to the power supply unit to read PSU information. Devices communicate with an SMBus host and/or other SMBus devices using the SMBus interface.
11. **EATX power connectors (24-pin ATX_PWR1, 8-pin ATX12V1)**

These connectors are for an EATX power supply plugs. The power supply plugs are designed to fit these connectors in only one orientation. Find the proper orientation and push down firmly until the connectors completely fit.

- DO NOT forget to connect the 24+8-pin power plugs; otherwise, the system will not boot up.
- Use of a PSU with a higher power output is recommended when configuring a system with more power-consuming devices. The system may become unstable or may not boot up if the power is inadequate.
- This motherboard supports EATX2.0 PSU or later version.
- Ensure that your power supply unit (PSU) can provide at least the minimum power required by your system.
12. **System panel connector (20-1 pin PANEL1)**
 This connector supports several chassis-mounted functions.

![Z9PX-Q32 System panel connector](image)

1. **System power LED (3-pin PLED)**
 This 3-pin connector is for the system power LED. Connect the chassis power LED cable to this connector. The system power LED lights up when you turn on the system power, and blinks when the system is in sleep mode.

2. **Message LED (2-pin MLED)**
 This 2-pin connector is for the message LED cable that connects to the front message LED. The message LED is controlled by Hardware monitor to indicate an abnormal event occurrence.

3. **System warning speaker (4-pin SPEAKER)**
 This 4-pin connector is for the chassis-mounted system warning speaker. The speaker allows you to hear system beeps and warnings.

4. **Hard disk drive activity LED (2-pin HDDLED)**
 This 2-pin connector is for the HDD Activity LED. Connect the HDD Activity LED cable to this connector. The IDE LED lights up or flashes when data is read from or written to the HDD.

5. **SSI power button/soft-off button (2-pin PWRSW)**
 This connector is for the system power button. Pressing the power button turns the system on or puts the system in sleep or soft-off mode depending on the BIOS settings. Pressing the power switch for more than four seconds while the system is ON turns the system OFF.

6. **Reset button (2-pin RESET)**
 This 2-pin connector is for the chassis-mounted reset button for system reboot without turning off the system power.
13. **Auxiliary panel connector (20-2 pin AUX_PANEL1)**

This connector is for additional front panel features including front panel SMB, locator LED and switch, chassis intrusion, and LAN LEDs.

<table>
<thead>
<tr>
<th>Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. FPSMB</td>
<td>Front panel SMB (6-1 pin FPSMB) These leads connect the front panel SMBus cable.</td>
</tr>
<tr>
<td>2. LAN1_LED, LAN2_LED</td>
<td>LAN activity LED (2-pin LAN1_LED, LAN2_LED) These leads are for Gigabit LAN activity LEDs on the front panel.</td>
</tr>
<tr>
<td>3. CHASSIS</td>
<td>Chassis intrusion (4-1 pin CHASSIS) These leads are for the intrusion detection feature for chassis with intrusion sensor or microswitch. When you remove any chassis component, the sensor triggers and sends a high-level signal to these leads to record a chassis intrusion event. The default setting is short CASEOPEN and GND pin by jumper cap to disable the function.</td>
</tr>
<tr>
<td>4. LOCATORLED1, LOCATORLED2</td>
<td>Locator LED (2-pin LOCATORLED1 and 2-pin LOCATORLED2) These leads are for the locator LED1 and LED2 on the front panel. Connect the Locator LED cables to these 2-pin connector. The LEDs will light up when the Locator button is pressed.</td>
</tr>
<tr>
<td>5. LOCATORBTN</td>
<td>Locator Button/Swich (2-pin LOCATORBTN) These leads are for the locator button on the front panel. This button queries the state of the system locator.</td>
</tr>
</tbody>
</table>
4.4 Internal LEDs

1. Standby Power LED (SB_PWR1)
 The motherboard comes with a standby power LED. The green LED lights up to indicate the system AC power cable plug or not. This is a reminder that you should shut down the system and unplug the power cable before removing or plugging in any motherboard component. The illustration below shows the location of the onboard LED.

 Z9PX-Q32 Standby power LED

2. DIMM warning LED (ERR_DIMM)
 The DIMM warning LEDs light up to indicate an impending failure of the corresponding DIMMs.

 Z9PX-Q32 ERR DIMM LED

 The warning LEDs function only when you install the ASUS ASMB6.
3. **CPU warning LED (ERR_CPU1/2/3/4)**

 The CPU warning LEDs light up to indicate an impending failure of the corresponding CPU.

 ![Z9PX-Q32 ERR CPU LED](image)

4. **CATTERR LED (CATTERR_LED1)**

 The CATTERR LED indicates that the system has experienced a fatal or catastrophic error and cannot continue to operate.

 ![Z9PX-Q32 CATTERR LED](image)
5. **Baseboard Management Controller LED (BMC_LED1)**

The BMC LED works with the ASUS ASMB6 management device and indicates its initiation status. When the PSU is plugged and the system is OFF, ASUS ASMB6 management device starts system initiation for about one (1) minute. The BMC LED blinks after system initiation finishes.

- The heartbeat LED functions only when you install the ASUS ASMB6.
- Everytime after the AC power is replugged, you have to wait for about 30 seconds for the system to power up.

6. **Q-Code LED (LED1_LED2)**

The Q-Code LED provides you a 2-digit display that shows the system status. Refer to the Q-Code table below for more details.
Q-Code table

<table>
<thead>
<tr>
<th>Action</th>
<th>PHASE</th>
<th>POST CODE</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal boot</td>
<td>Security Phase</td>
<td>01</td>
<td>Progress</td>
<td>First post code(POWER_ON_POST_CODE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>02</td>
<td>Progress</td>
<td>Load BSP microcode(MICROCODE_POST_CODE)</td>
</tr>
<tr>
<td></td>
<td>PEI(Pre-EFI</td>
<td>03</td>
<td>Progress</td>
<td>Set cache as ram for PEI phase(CACHE_ENABLED_POST_CODE)</td>
</tr>
<tr>
<td></td>
<td>initialization)</td>
<td>06</td>
<td>Progress</td>
<td>CPU Early init.(CPU_EARLY_INIT_POST_CODE)</td>
</tr>
<tr>
<td></td>
<td>phase</td>
<td>04</td>
<td>Progress</td>
<td>initializes South bridge for PEI preparation</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Progress</td>
<td>01</td>
<td>PEI Core Entry</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Progress</td>
<td>02</td>
<td>NB initialize before installed memory</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>Progress</td>
<td>03</td>
<td>SB initialize before installed memory</td>
</tr>
<tr>
<td></td>
<td>78-00</td>
<td>Progress</td>
<td>04</td>
<td>Wait BMC ready(duration: 120 seconds).</td>
</tr>
<tr>
<td></td>
<td>A1</td>
<td>MRC Progress</td>
<td>05</td>
<td>QPI initialization</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>MRC Progress</td>
<td>06</td>
<td>QPI initialization</td>
</tr>
<tr>
<td></td>
<td>A7</td>
<td>MRC Progress</td>
<td>07</td>
<td>QPI initialization</td>
</tr>
<tr>
<td></td>
<td>A8</td>
<td>MRC Progress</td>
<td>08</td>
<td>QPI initialization</td>
</tr>
<tr>
<td></td>
<td>A9</td>
<td>MRC Progress</td>
<td>09</td>
<td>QPI initialization</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>MRC Progress</td>
<td>0A</td>
<td>QPI initialization</td>
</tr>
<tr>
<td></td>
<td>AB</td>
<td>MRC Progress</td>
<td>0B</td>
<td>QPI initialization</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>MRC Progress</td>
<td>0C</td>
<td>QPI initialization</td>
</tr>
<tr>
<td></td>
<td>AD</td>
<td>MRC Progress</td>
<td>0D</td>
<td>QPI initialization</td>
</tr>
<tr>
<td></td>
<td>AE</td>
<td>MRC Progress</td>
<td>0E</td>
<td>QPI initialization</td>
</tr>
<tr>
<td></td>
<td>AF</td>
<td>MRC Progress</td>
<td>0F</td>
<td>QPI initialization Complete</td>
</tr>
<tr>
<td></td>
<td>2F</td>
<td>Progress</td>
<td>10</td>
<td>Memory Init.</td>
</tr>
<tr>
<td></td>
<td>B0</td>
<td>MRC Progress</td>
<td>11</td>
<td>Memory Init.</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>MRC Progress</td>
<td>12</td>
<td>Memory Init.</td>
</tr>
<tr>
<td></td>
<td>AF</td>
<td>MRC Progress</td>
<td>13</td>
<td>RC Reset if require</td>
</tr>
<tr>
<td></td>
<td>B4</td>
<td>MRC Progress</td>
<td>14</td>
<td>Memory Init.</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>MRC Progress</td>
<td>15</td>
<td>Memory Init.</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td>MRC Progress</td>
<td>16</td>
<td>Memory Init.</td>
</tr>
<tr>
<td></td>
<td>B5</td>
<td>MRC Progress</td>
<td>17</td>
<td>Memory Init.</td>
</tr>
<tr>
<td></td>
<td>B6</td>
<td>MRC Progress</td>
<td>18</td>
<td>Memory Init.</td>
</tr>
<tr>
<td></td>
<td>B7</td>
<td>MRC Progress</td>
<td>19</td>
<td>Memory Init.</td>
</tr>
<tr>
<td></td>
<td>B8</td>
<td>MRC Progress</td>
<td>1A</td>
<td>Memory Init.</td>
</tr>
<tr>
<td></td>
<td>B9</td>
<td>MRC Progress</td>
<td>1B</td>
<td>Memory Init.</td>
</tr>
<tr>
<td></td>
<td>BA</td>
<td>MRC Progress</td>
<td>1C</td>
<td>Memory Init.</td>
</tr>
<tr>
<td></td>
<td>BB</td>
<td>MRC Progress</td>
<td>1D</td>
<td>Memory Init.</td>
</tr>
<tr>
<td></td>
<td>BC</td>
<td>MRC Progress</td>
<td>1E</td>
<td>Memory Init.</td>
</tr>
<tr>
<td></td>
<td>BF</td>
<td>MRC Progress</td>
<td>1F</td>
<td>Memory Init. Done</td>
</tr>
<tr>
<td></td>
<td>5A</td>
<td>MRC Progress</td>
<td>20</td>
<td>Other config. After RC end</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>Progress</td>
<td>21</td>
<td>Memory already installed</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>Progress</td>
<td>22</td>
<td>CPU Init.</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>Progress</td>
<td>23</td>
<td>CPU Init.</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>Progress</td>
<td>24</td>
<td>CPU Init.</td>
</tr>
<tr>
<td></td>
<td>4F</td>
<td>Progress</td>
<td>25</td>
<td>DXE Initial Program Load(IPL)</td>
</tr>
</tbody>
</table>

(continued on the next page)
<table>
<thead>
<tr>
<th>Action</th>
<th>PHASE</th>
<th>POST CODE</th>
<th>TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal boot</td>
<td>DXE(Driver Execution Environment) phase</td>
<td>60</td>
<td>Progress</td>
<td>DXE Core Started</td>
</tr>
<tr>
<td></td>
<td></td>
<td>61</td>
<td>Progress</td>
<td>DXE NVRAM init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62</td>
<td>Progress</td>
<td>SB run-time init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>63</td>
<td>Progress</td>
<td>DXE CPU Init</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68</td>
<td>Progress</td>
<td>NB Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>69</td>
<td>Progress</td>
<td>NB Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6A</td>
<td>Progress</td>
<td>NB Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70</td>
<td>Progress</td>
<td>SB Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>71</td>
<td>Progress</td>
<td>SB Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>Progress</td>
<td>SB Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>78</td>
<td>Progress</td>
<td>ACPI Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>79</td>
<td>Progress</td>
<td>CSM Init.</td>
</tr>
<tr>
<td>BDS(Boot Device Selection) phase</td>
<td></td>
<td>90</td>
<td>Progress</td>
<td>BDS started</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91</td>
<td>Progress</td>
<td>Connect device event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92</td>
<td>Progress</td>
<td>PCI Bus Enumeration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93</td>
<td>Progress</td>
<td>PCI Bus Enumeration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>94</td>
<td>Progress</td>
<td>PCI Bus Enumeration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95</td>
<td>Progress</td>
<td>PCI Bus Enumeration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96</td>
<td>Progress</td>
<td>PCI Bus Enumeration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>97</td>
<td>Progress</td>
<td>Console output connect event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98</td>
<td>Progress</td>
<td>Console input connect event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99</td>
<td>Progress</td>
<td>AMI Super IO start</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9A</td>
<td>Progress</td>
<td>AMI USB Driver Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9B</td>
<td>Progress</td>
<td>AMI USB Driver Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9C</td>
<td>Progress</td>
<td>AMI USB Driver Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9D</td>
<td>Progress</td>
<td>AMI USB Driver Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b2</td>
<td>Progress</td>
<td>Legacy Option ROM Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b3</td>
<td>Progress</td>
<td>Reset system</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b4</td>
<td>Progress</td>
<td>USB hotplug</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b6</td>
<td>Progress</td>
<td>NVRAM clean up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b7</td>
<td>Progress</td>
<td>NVRAM configuration reset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A0</td>
<td>Progress</td>
<td>IDE, AHCI Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td>Progress</td>
<td>IDE, AHCI Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2</td>
<td>Progress</td>
<td>IDE, AHCI Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A3</td>
<td>Progress</td>
<td>IDE, AHCI Init.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A8</td>
<td>Progress</td>
<td>BIOS Setup Utility password verify</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A9</td>
<td>Progress</td>
<td>BIOS Setup Utility start</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AB</td>
<td>Progress</td>
<td>BIOS Setup Utility input wait</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AD</td>
<td>Progress</td>
<td>Ready to boot event</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AE</td>
<td>Progress</td>
<td>Legacy boot event</td>
</tr>
<tr>
<td>Operating system phase</td>
<td></td>
<td>17</td>
<td>Progress</td>
<td>ME event for Node Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18</td>
<td>Progress</td>
<td>ME event for Node Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
<td>Progress</td>
<td>ME event for Node Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>Progress</td>
<td>ME event for Node Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
<td>Progress</td>
<td>ME event for Node Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22</td>
<td>Progress</td>
<td>ME event for Node Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23</td>
<td>Progress</td>
<td>ME event for Node Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
<td>Progress</td>
<td>ME event for Node Manager</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td>Progress</td>
<td>ME event for Node Manager</td>
</tr>
</tbody>
</table>
This chapter tells how to change the system settings through the BIOS Setup menus. Detailed descriptions of the BIOS parameters are also provided.
5.1 Managing and updating your BIOS

The following utilities allow you to manage and update the motherboard Basic Input/Output System (BIOS) setup:

1. **ASUS CrashFree BIOS 3** (Recovers the BIOS using a bootable USB flash disk drive when the BIOS file fails or gets corrupted.)
2. **ASUS EZ Flash 2** (Updates the BIOS using a USB flash disk.)
3. **BUPDATER utility** (Updates the BIOS in DOS mode using a bootable USB flash disk drive.)

Refer to the corresponding sections for details on these utilities.

Save a copy of the original motherboard BIOS file to a bootable USB flash disk drive in case you need to restore the BIOS in the future. Copy the original motherboard BIOS using the BUPDATER utility.

5.1.1 ASUS CrashFree BIOS 3 utility

The ASUS CrashFree BIOS 3 is an auto recovery tool that allows you to restore the BIOS file when it fails or gets corrupted during the updating process. You can update a corrupted BIOS file using a USB flash drive that contains the updated BIOS file.

Prepare a USB flash drive containing the updated motherboard BIOS before using this utility.

Recovering the BIOS from a USB flash drive

To recover the BIOS from a USB flash drive:

1. Insert the USB flash drive with the original or updated BIOS file to one USB port on the system.
2. The utility will automatically recover the BIOS. It resets the system when the BIOS recovery is finished.

DO NOT shut down or reset the system while recovering the BIOS! Doing so would cause system boot failure!

The recovered BIOS may not be the latest BIOS version for this motherboard. Visit the ASUS website at www.asus.com to download the latest BIOS file.
5.1.2 ASUS EZ Flash 2 Utility

The ASUS EZ Flash 2 Utility feature allows you to update the BIOS without having to use a DOS-based utility.

Before you start using this utility, download the latest BIOS from the ASUS website at www.asus.com.

To update the BIOS using EZ Flash 2 Utility

1. Insert the USB flash disk that contains the latest BIOS file into the USB port.
2. Enter the BIOS setup program. Go to the Tool menu then select ASUS EZ Flash 2 Utility. Press <Enter>.

3. Press <Tab> to switch to the Drive field.
4. Press the Up/Down arrow keys to find the USB flash disk that contains the latest BIOS, then press <Enter>.
5. Press <Tab> to switch to the Folder Info field.
6. Press the Up/Down arrow keys to find the BIOS file, and then press <Enter> to perform the BIOS update process. Reboot the system when the update process is done.
5.1.3 BUPDATER utility

The BUPDATER utility allows you to update the BIOS file in the DOS environment using a bootable USB flash disk drive with the updated BIOS file.

Updating the BIOS file
To update the BIOS file using the BUPDATER utility:

1. Visit the ASUS website at www.asus.com and download the latest BIOS file for the motherboard. Save the BIOS file to a bootable USB flash disk drive.
2. Copy the BUPDATER utility (BUPDATER.exe) from the ASUS support website at support.asus.com to the bootable USB flash disk drive you created earlier.
3. Boot the system in DOS mode, then at the prompt, type:

 BUPDATER /i[filename].ROM

 where [filename] is the latest or the original BIOS file on the bootable USB flash disk drive, then press <Enter>.

 A:\>BUPDATER /i[file name].ROM
4. The utility verifies the file, then starts updating the BIOS file.

5. The utility returns to the DOS prompt after the BIOS update process is completed. Reboot the system from the hard disk drive.

WARNING! Do not turn off power during flash BIOS

DO NOT shut down or reset the system while updating the BIOS to prevent system boot failure!
5.2 BIOS setup program

This motherboard supports a programmable firmware chip that you can update using the provided utility described in section 5.1 Managing and updating your BIOS.

Use the BIOS Setup program when you are installing a motherboard, reconfiguring your system, or prompted to “Run Setup.” This section explains how to configure your system using this utility.

Even if you are not prompted to use the Setup program, you can change the configuration of your computer in the future. For example, you can enable the security password feature or change the power management settings. This requires you to reconfigure your system using the BIOS Setup program so that the computer can recognize these changes and record them in the CMOS RAM of the firmware chip.

The firmware chip on the motherboard stores the Setup utility. When you start up the computer, the system provides you with the opportunity to run this program. Press during the Power-On Self-Test (POST) to enter the Setup utility; otherwise, POST continues with its test routines.

If you wish to enter Setup after POST, restart the system by pressing <Ctrl+Alt+Delete>, or by pressing the reset button on the system chassis. You can also restart by turning the system off and then back on. Do this last option only if the first two failed.

The Setup program is designed to make it as easy to use as possible. Being a menu-driven program, it lets you scroll through the various sub-menus and make your selections from the available options using the navigation keys.

- The default BIOS settings for this motherboard apply for most conditions to ensure optimum performance. If the system becomes unstable after changing any BIOS settings, load the default settings to ensure system compatibility and stability. Press <F5> and select Yes to load the BIOS default settings.
- The BIOS setup screens shown in this section are for reference purposes only, and may not exactly match what you see on your screen.
- Visit the ASUS website (www.asus.com) to download the latest BIOS file for this motherboard.
5.2.1 BIOS menu screen

The menu bar on top of the screen has the following main items:

- **Main**: For changing the basic system configuration
- **Advanced**: For changing the advanced system settings
- **Server Mgmt**: For changing the Server Mgmt settings
- **Event Logs**: For changing the event log settings
- **Monitor**: For displaying the system temperature, power status, and changing the fan settings
- **Security**: For changing the security settings
- **Boot**: For changing the system boot configuration
- **Tool**: For configuring options for special functions
- **Exit**: For selecting the exit options

To select an item on the menu bar, press the right or left arrow key on the keyboard until the desired item is highlighted.
5.2.3 Menu items

The highlighted item on the menu bar displays the specific items for that menu. For example, selecting Main shows the Main menu items.

The other items (Event Logs, Advanced, Monitor, Boot, Tool, and Exit) on the menu bar have their respective menu items.

5.2.4 Submenu items

A solid triangle before each item on any menu screen means that the item has a submenu. To display the submenu, select the item then press <Enter>.

5.2.5 Navigation keys

At the bottom right corner of a menu screen are the navigation keys for the BIOS setup program. Use the navigation keys to select items in the menu and change the settings.

5.2.6 General help

At the top right corner of the menu screen is a brief description of the selected item.

5.2.7 Configuration fields

These fields show the values for the menu items. If an item is user-configurable, you can change the value of the field opposite the item. You cannot select an item that is not user-configurable.

A configurable field is enclosed in brackets, and is highlighted when selected. To change the value of a field, select it and press <Enter> to display a list of options.

5.2.8 Pop-up window

Select a menu item and press <Enter> to display a pop-up window with the configuration options for that item.

5.2.9 Scroll bar

A scroll bar appears on the right side of a menu screen when there are items that do not fit on the screen. Press the Up/Down arrow keys or <Page Up> /<Page Down> keys to display the other items on the screen.
5.3 Main menu

When you enter the BIOS Setup program, the Main menu screen appears. The Main menu provides you an overview of the basic system information, and allows you to set the system date, time, language, and security settings.

<table>
<thead>
<tr>
<th>BIOS Information</th>
<th>American Megatrends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Version</td>
<td>4.6.4.1</td>
</tr>
<tr>
<td>Compliancy</td>
<td>UEFI 2.1; PI 0.9</td>
</tr>
<tr>
<td>BIOS Version</td>
<td>0306 x64</td>
</tr>
<tr>
<td>Build Date</td>
<td>01/16/2012</td>
</tr>
</tbody>
</table>

- **System Date** [Tue 01/17/2012]
- **System Time** [15:07:28]

- **Access Level** Administrator

<table>
<thead>
<tr>
<th>Memory Information</th>
<th>2048 MB (DDR3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>2600 MHz</td>
</tr>
<tr>
<td>Count:</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Onboard LAN1 MAC** 00:E0:18:10:14:00
- **Onboard LAN2 MAC** 00:E0:18:10:14:01
- **Onboard LAN3 MAC** 00:E0:18:10:14:02
- **Onboard LAN4 MAC** 00:E0:18:10:14:03

5.3.1 System Date [Day xx/xx/xxxx]

Allows you to set the system date.

5.3.2 System Time [xx:xx:xx]

Allows you to set the system time.
5.4 Advanced menu

The Advanced menu items allow you to change the settings for the CPU and other system devices.

Take caution when changing the settings of the Advanced menu items. Incorrect field values can cause the system to malfunction.

5.4.1 CPU Configuration

Enter to view socket specific CPU Information.

--- Select Screen
↑↓: Select Item
Enter: Select Item
F1: General Help
F2: Previous Values
F5: Optimized Defaults
F10: Save & Exit
ESC: Exit

Version 2.15.1219. Copyright (C) 2011 American Megatrends, Inc.
Socket 1 CPU Information
Enter to view socket specific CPU Information.

<table>
<thead>
<tr>
<th>Socket 1 CPU Information</th>
<th>Enter to view socket specific CPU Information.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genuine Intel(R) CPU @ 2.60GHz</td>
<td></td>
</tr>
<tr>
<td>CPU Signature</td>
<td>206d5</td>
</tr>
<tr>
<td>Microcode Patch</td>
<td>512</td>
</tr>
<tr>
<td>Max CPU Speed</td>
<td>2600 MHz</td>
</tr>
<tr>
<td>Min CPU Speed</td>
<td>1200 MHz</td>
</tr>
<tr>
<td>Processor Cores</td>
<td>8</td>
</tr>
<tr>
<td>Intel HT Technology</td>
<td>Supported</td>
</tr>
<tr>
<td>Intel VT-X Technology</td>
<td>Supported</td>
</tr>
<tr>
<td>L1 Data Cache</td>
<td>32 kB x8</td>
</tr>
<tr>
<td>L1 Code Cache</td>
<td>32 kB x8</td>
</tr>
<tr>
<td>L2 Cache</td>
<td>256 kB x8</td>
</tr>
<tr>
<td>L3 Cache</td>
<td>20480 kB</td>
</tr>
</tbody>
</table>

→←: Select Screen
↑↓: Select Item
Enter: Select Item
+-: Change Opt.
F1: General Help
F2: Previous Values
F5: Optimized Defaults
F10: Save & Exit
ESC: Exit

Version 2.15.1219. Copyright (C) 2011 American Megatrends, Inc.

Hyper Threading [Enabled]
Allows you to enable or disable the Intel® Hyper-Threading Technology function. When disabled, only one thread per activated core is enabled.
Configuration options: [Disabled] [Enabled]

Active Processor Cores [All]

Limit CPUID Maximum [Disabled]
Setting this item to [Enabled] allows legacy operating system to boot even without support for CPUs with extended CPUID functions.
Configuration options: [Disabled] [Enabled]

Execute Disable Bit [Enabled]
XD can prevent certain classes of malicious buffer overflow attacks when combined with a supporting OS (Windows Server 2003 SP1, Windows XP SP2, SuSE Linux 9.2, Redhat Enterprise 3 Update 3).
Configuration options: [Disabled] [Enabled]

Server Class [Custom]
Use Intel® recommended prefetch settings.
Configuration options: [Enterprise] [High Performance(HPC)] [Custom]

Hardware Prefetcher [Enabled]
This Item allows you to turn on/off the mid level cache(L2) streamer prefetcher.
Configuration options: [Disabled] [Enabled]
Adjacent Cache Line Prefetch [Enabled]
This Item allows you to turn on/off prefetching of adjacent cache lines.
Configuration options: [Disabled] [Enabled]

DCU Streamer Prefetcher [Enabled]
This Item allows you to enable or disable prefetcher of next L1 data line.
Configuration options: [Disabled] [Enabled]

DCU IP Prefetcher [Enabled]
This Item allows you to enable or disable prefetch of next L1 line based upon sequential load history.
Configuration options: [Disabled] [Enabled]

Intel® Virtualization Technology [Enabled]
When this item is enabled, a VMM can utilize the additional hardware capabilities provided by Vanderpool Technology.
Configuration options: [Disabled] [Enabled]

Local APIC Mode [Auto]
Select Local APIC mode. If Auto, use x2APIC if required. Otherwise, use xAPIC mode. xAPIC will disable CPUs with APIC IDs greater than 254. Some OS do not support x2APIC mode.
Configuration options: [Auto] [x2APIC] [xAPIC]
5.4.2 CPU Power Management Configuration

Power Technology [Custom]
This item allows you to enable power management features. Configuration options: [Disabled] [Energy Efficient] [Custom]

EIST [Enabled]
This item allows you to enable/disable Intel® SpeedStep. Configuration options: [Disabled] [Enabled]

Turbo Mode [Enabled]
Configuration options: [Disabled] [Enabled]

P-STATE Coordination [HW_ALL]
This item allows you to change P-STATE Coordination type. Configuration options: [HW_ALL] [SW_ALL] [SW_ANY]

CPU C3 Report [Disabled]
This item allows you to enable/disable CPU C3(ACPI C2) report. Configuration options: [Disabled] [Enabled]

CPU C6 Report [Enabled]
This item allows you to enable/disable CPU C6(ACPI C3) report. Configuration options: [Disabled] [Enabled]
Package C State limit [C6]
This item allows you to set package C State limit.
Configuration options: [C0] [C2] [C6] [No Limit]

Energy Performance [Balanced Performance]
This item allows you to optimize between performance and power savings.
Windows 2008 and later operating systems override this value according to this power plan.
Configuration options: [Performance] [Balanced Performance] [Balanced Energy] [Energy Efficient]

Factory long duration power limit
115 Watts

Long duration power limit
0
Allows you to set long duration power limit in watts. Use the number keys to set the value.

Factory long duration maintained
1000 ms

Long duration power limit
0
Allows you to set time window which the long duration power is maintained. Use the number keys to set the value.

Recommended short duration power limitation
1.2 * Long Duration

Short duration power limit
0
Allows you to set short duration power limit in watts. Use the number keys to set the value.
5.4.3 Chipset Configuration

QPI Configuration

<table>
<thead>
<tr>
<th>Current QPI Link Speed</th>
<th>Slow</th>
<th>Enable/disable Isoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current QPI Link Freq</td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Isoc</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>QPI Link Speed Mode</td>
<td>[Fast]</td>
<td></td>
</tr>
<tr>
<td>QPI Link0s</td>
<td>[Disabled]</td>
<td></td>
</tr>
<tr>
<td>QPI Link0p</td>
<td>[Disabled]</td>
<td></td>
</tr>
<tr>
<td>QPI Link1</td>
<td>[Enabled]</td>
<td></td>
</tr>
</tbody>
</table>

- **Isoc [Enabled]**
 - Configuration options: [Disabled] [Enabled]

- **QPI Link Speed Mode [Fast]**
 - This item allows you to select the QPI link speed as either the fast mode or slow mode.
 - Configuration options: [Slow] [Fast]

- **QPI Link Frequency Select [Auto]**
 - This item allows for selecting the QPI link frequency
 - Configuration options: [Auto] [6.4 GT/s] [7.2 GT/s (Fast Mode Only)] [8.0 GT/s (Fast Mode Only)]

- **QPI Link0s [Disabled]**
 - Configuration options: [Disabled] [Enabled]

- **QPI Link0p [Disabled]**
 - Configuration options: [Disabled] [Enabled]

- **QPI Link1 [Enabled]**
 - Configuration options: [Disabled] [Enabled]
Memory Configuration

<table>
<thead>
<tr>
<th>Compatibility RID</th>
<th>[Enabled]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Configuration</td>
<td></td>
</tr>
<tr>
<td>Total Memory</td>
<td>2048 MB (DDR3)</td>
</tr>
<tr>
<td>Current Memory Mode</td>
<td>Independent</td>
</tr>
<tr>
<td>Currently Memory Speed</td>
<td>1333 MHz</td>
</tr>
<tr>
<td>Mirroring</td>
<td>Supported</td>
</tr>
<tr>
<td>Sparring</td>
<td>Not Possible</td>
</tr>
<tr>
<td>Memory Mode</td>
<td>[Independent]</td>
</tr>
<tr>
<td>DDR Speed</td>
<td>[Auto]</td>
</tr>
<tr>
<td>Channel Interleaving</td>
<td>[Auto]</td>
</tr>
<tr>
<td>Rank Interleaving</td>
<td>[Auto]</td>
</tr>
<tr>
<td>Patrol Scrub</td>
<td>[Disabled]</td>
</tr>
<tr>
<td>Demand Scrub</td>
<td>[Enabled]</td>
</tr>
<tr>
<td>Data Scrambling</td>
<td>[Enabled]</td>
</tr>
<tr>
<td>Device Tagging</td>
<td>[Disabled]</td>
</tr>
<tr>
<td>Thermal Throttling</td>
<td>[CLTT]</td>
</tr>
<tr>
<td>Enable High Temp</td>
<td>[Disabled]</td>
</tr>
<tr>
<td>Allow 2x Refresh</td>
<td>[Enabled]</td>
</tr>
<tr>
<td>Altitude</td>
<td>[300 M]</td>
</tr>
<tr>
<td>Memory HOT Sensor support</td>
<td>[Enabled]</td>
</tr>
</tbody>
</table>

Compatibility RID [Enabled]
Support for compatibility revision ID (CRID) functionality mentioned in Sandybridge BIOS spec. Configuration options: [Enabled] [Disabled]

Memory Mode [Independent]
Select the mode for memory initialization.
Configuration options: [Independent] [Mirroring] [Lock Step] [Sparing]

DDR Speed [Auto]
Force DDR speed.
Configuration options: [Auto] [Force DDR3 800] [Force DDR3 1066] [Force DDR3 1333] [Force DDR3 1600] [Force DDR3 1866]

Channel Interleaving [Auto]
Select different channel interleaving setting.
Configuration options: [Auto] [1 Way] [2 Way] [3 Way] [4 Way]

Rank Interleaving [Auto]
Select different rank interleaving setting.
Configuration options: [Auto] [1 Way] [2 Way] [4 Way] [8 Way]
Patrol Scrub [Disabled]
Allows you to enable/disable Patrol Scrub.
Configuration options: [Disabled] [Enabled]

Demand Scrub [Enabled]
Allows you to enable/disable demand scrubing feature.
Configuration options: [Enabled] [Disabled]

Data Scrambling [Enabled]
Allows you to enable/disable data scrambling.
Configuration options: [Enabled] [Disabled]

Device Tagging [Disabled]
Allows you to enable/disable device tagging.
Configuration options: [Enabled] [Disabled]

Thermal Throtting [CLTT]
Configuration options: [Disabled] [OLTT] [CLTT]

Enable High Temp [Disabled]
Configuration options: [Disabled] [Enabled]

Allow 2x Refresh [Enabled]
Configuration options: [Disabled] [Enabled]

Altitude [300 M]
The system altitude above the sea level in meters.
Configuration options: [Auto] [300 M] [900 M] [1500 M] [3000 M]

Memory Hot sensor support [Enabled]
Configuration options: [Disabled] [Enabled]
DIMM Information

- **CPU1 DIMM Information**
 - Node 0 Ch0 Dimm A1 Present 2048 MB (DDR3)
 - Node 0 Ch0 Dimm A2 Not Present
 - Node 0 Ch1 Dimm B1 Not Present
 - Node 0 Ch1 Dimm B2 Not Present
 - Node 0 Ch2 Dimm C1 Not Present
 - Node 0 Ch2 Dimm C2 Not Present
 - Node 0 Ch3 Dimm D1 Not Present
 - Node 0 Ch3 Dimm D2 Not Present

- **CPU2 DIMM Information**
- **CPU3 DIMM Information**
- **CPU4 DIMM Information**

CPU I/O Bridge Configuration

- **Intel(R) I/OAT [Disabled]**
 - Allows you to enable or disable Intel® I/O acceleration technology.
 - Configuration options: [Disabled] [Enabled]

- **DCA Support [Enabled]**
 - Allows you to enable or disable the direct cache access support.
 - Configuration options: [Disabled] [Enabled]

- **VGA Priority [offboard]**
 - Allows you to prioritize between onboard and 1st offboard video device found.
 - Configuration options: [Onboard] [Offboard]
PCH Configuration

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Patsburg</td>
<td>Stepping 06 (C1 Stepping)</td>
</tr>
<tr>
<td>SB Chipset Configuration</td>
<td>Support for PCH compatibility. Configuration options: [Disabled] [Enabled]</td>
<td></td>
</tr>
<tr>
<td>PCH Compatibility RID</td>
<td>[Disabled]</td>
<td></td>
</tr>
<tr>
<td>Deep Sx</td>
<td>[Disabled]</td>
<td></td>
</tr>
<tr>
<td>SCU devices</td>
<td>[Enabled]</td>
<td>Allows you to enable or disable Patsburg SCU devices. Configuration options: [Enabled] [Disabled]</td>
</tr>
<tr>
<td>Onboard SATA RAID Oprom</td>
<td>[Enabled]</td>
<td>Allows you to enable/disable onboard SATA RAID option rom if Launch Storage Oprom is enabled. Configuration options: [Disabled] [Enabled]</td>
</tr>
<tr>
<td>High Precision Event Timer Configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Precision Timer</td>
<td>[Enabled]</td>
<td></td>
</tr>
</tbody>
</table>

Mobile platforms support deep S4/S5 in DC only and desktop platforms support deep S4/S5 in AC only.

SCU devices [Enabled]

Allows you to enable or disable Patsburg SCU devices.
Configuration options: [Enabled] [Disabled]

Onboard SATA RAID Oprom [Enabled]

Allows you to enable/disable onboard SATA RAID option rom if Launch Storage Oprom is enabled.
Configuration options: [Disabled] [Enabled]

High Precision Event Timer Configuration

High Precision Timer [Enabled]

Allows you to enable/disable High Precision Event Timer.
Configuration options: [Disabled] [Enabled]
Intel(R) VT for Directed I/O Configuration

Intel(R) VT-d [Disabled]
Allows you to enable or disable Intel® VT-d.
Configuration options: [Enabled] [Disabled]

The following item appears only when you set Intel(R) VT-d to [Enabled].

Coherency Support [Disabled]
Allows you to enable/disable VT-d Engine Coherency support.
Configuration options: [Disabled] [Enabled]

ATS Support [Disabled]
Allows you to enable/disable VT-d Engine address translation services (ATS) support. Configuration options: [Disabled] [Enabled]

5.4.4 PCH SATA Configuration

SATA Port1 Not Present
SATA Port2 ASUS DWR ATAPI
SATA Port3 WDC WD800JD(80.0GB)
SATA Port4 Not Present
SATA Port5 Not Present
SATA Port6 Not Present
SATA Mode [AHCI Mode]
S.M.A.R.T. Status Check [Enabled]
Port 1 Staggered Spin-up [Disabled]
Port 2 Staggered Spin-up [Disabled]
Port 3 Staggered Spin-up [Disabled]
Port 4 Staggered Spin-up [Disabled]
Port 5 Staggered Spin-up [Disabled]
Port 6 Staggered Spin-up [Disabled]
SATA Mode [AHCI Mode]

Allows you to set the SATA configuration.

Configuration options: [Disabled] [IDE Mode] [AHCI Mode] [RAID Mode]

- If you want to use the Serial ATA hard disk drives as Parallel ATA physical storage devices, set this item to [IDE Mode].
- If you want the Serial ATA hard disk drives to use the Advanced Host Controller Interface (AHCI), keep the default setting [AHCI Mode]. The AHCI allows the onboard storage driver to enable advanced Serial ATA features that increases storage performance on random workloads by allowing the drive to internally optimize the order of commands.
- If you want to create RAID sets with LSI MegaRAID utility, or Intel® Rapid Storage Technology Enterprise from the Serial ATA hard disk drives, set this item to [RAID Mode].

S.M.A.R.T. Status Check [Enabled]

S.M.A.R.T. (Self-Monitoring, Analysis and Reporting Technology) is a monitor system. When read/write of your hard disk errors occur, this feature allows the hard disk to report warning messages during the POST.

Configuration options: [Enabled] [Disabled]

Staggered Spin-up [Disabled]

Staggered spin-up is a feature defined in the Serial ATA Specifications. It enables an HBA to individually spin-up attached SATA devices to avoid maximum current charged by applying all attached SATA devices at the same time.

Configuration options: [Disabled] [Enabled]
5.4.5 PCH SCU Configuration

- Device1: Intel ISR10a
- Device2: Intel ISR10a
- Device3: Intel ISR10a
- Device4: Intel ISR10a

PCI ROM Priority [EFI Compatible ROM]
In case of multiple option roms (Legacy and EFI Compatible), specifies what PCI option ROM to launch. Configuration options: [Legacy ROM] [EFI Compatible ROM]

5.4.6 PCI Subsystem Settings

- PCI Bus Driver Version: V 2.05.00
- PCI Option ROM Handling [EFI Compatible ROM]
- PCI Latency Timer [32 PCI Bus Clocks]
- VGA Palette Snoop [Disabled]
- PERR# Generation [Disabled]
- SERR# Generation [Disabled]
- Load RT32 Image [Enabled]

PCI ROM Priority [EFI Compatible ROM]
In case of multiple option roms (Legacy and EFI Compatible), specifies what PCI option ROM to launch. Configuration options: [Legacy ROM] [EFI Compatible ROM]

PCI Latency Timer [32 PCI Bus Clocks]
Value to be programmed into PCI latency timer register
Configuration options: [32 PCI Bus Clocks] [64 PCI Bus Clocks] [96 PCI Bus Clocks] [128 PCI Bus Clocks] [160 PCI Bus Clocks] [192 PCI Bus Clocks] [224 PCI Bus Clocks] [248 PCI Bus Clocks]
VGA Palette Snoop [Disabled]
Allows you to enable or disable VGA palette registers snooping. Configuration options: [Disabled] [Enabled]

PERR# Generation [Disabled]
Allows you to enable or disable PCI device to generate PERR#. Configuration options: [Disabled] [Enabled]

SERR# Generation [Disabled]
Allows you to enable or disable PCI device to generate SERR#. Configuration options: [Disabled] [Enabled]

Load RT32 Image [Enabled]
Allows you to enable or disable RT32 Image Loading. Configuration options: [Disabled] [Enabled]

PCI Express Settings

<table>
<thead>
<tr>
<th>PCI Express Link Register Settings</th>
<th>Allows you to enable or disable PCI Express Device Relaxed Ordering.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPM Support</td>
<td>[Disabled]</td>
</tr>
<tr>
<td>WARNING: Enabling ASPM may cause some PCI-E device to fail</td>
<td></td>
</tr>
</tbody>
</table>

PCI Express Link Register Settings

ASPM Support [Disabled]
Allows you to set the ASPM level. Configuration options: [Disabled] [Auto] [Force L0s] [Force L0s] [Auto] [Disabled]
[Force L0s] Force all links to L0s state.
[Auto] BIOS auto configure.
[Disabled] Disabled ASPM.
PCIE Slot Option Rom Configuration

<table>
<thead>
<tr>
<th>Legacy OpROM Support</th>
<th>[Enabled]</th>
<th>Allows you to enable or disable boot option for legacy mass storage device with option ROM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Launch Storage OpROM</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>PCIE1 Option Rom</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>PCIE2 Option Rom</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>PCIE3 Option Rom</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>PIKE Option Rom</td>
<td>[Enabled]</td>
<td></td>
</tr>
</tbody>
</table>

→←: Select Screen
↑↓: Select Item
F1: General Help
F2: Previous Values
F5: Optimized Defaults
F10: Save & Exit
ESC: Exit

Launch Storage OpROM [Enabled]
Allows you to enable or disable boot option for legacy mass storage device with option ROM.

Configuration options: [Disabled] [Enabled]

PCIE1 Option Rom [Enabled]
Configuration options: [Disabled] [Enabled]

PCIE2 Option Rom [Enabled]
Configuration options: [Disabled] [Enabled]

PCIE3 Option Rom [Enabled]
Configuration options: [Disabled] [Enabled]

PIKE Option Rom [Enabled]
Configuration options: [Disabled] [Enabled]
5.4.7 Onboard LAN Configuration

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel LAN ROM Type</td>
<td>PXE</td>
</tr>
<tr>
<td>Intel LAN1 Enable</td>
<td>Enabled</td>
</tr>
<tr>
<td>LAN1 Option ROM Support</td>
<td>Enabled</td>
</tr>
<tr>
<td>Intel LAN2 Enable</td>
<td>Enabled</td>
</tr>
<tr>
<td>LAN2 Option ROM Support</td>
<td>Enabled</td>
</tr>
<tr>
<td>Intel LAN3 Enable</td>
<td>Enabled</td>
</tr>
<tr>
<td>LAN3 Option ROM Support</td>
<td>Enabled</td>
</tr>
<tr>
<td>Intel LAN4 Enable</td>
<td>Enabled</td>
</tr>
<tr>
<td>LAN4 Option ROM Support</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

→←: Select Screen
↑↓: Select Item
Enter: Select Item
F1: General Help
F2: Previous Values
F5: Optimized Defaults
F10: Save & Exit
ESC: Exit

The following item appears only when you set **Intel LAN Support** to [Enabled].

Intel LAN ROM Type [PXE]
Configuration options: [PXE] [iSCSI]

Intel LAN1 Enable [Enabled]
Allows you to enable or disable Intel® LAN1 function. Configuration options: [Disabled] [Enabled]

LAN1 Option ROM Support [Enabled]
Configuration options: [Disabled] [Enabled]

Intel LAN2 Enable [Enabled]
Allows you to enable or disable Intel® LAN2 function. Configuration options: [Disabled] [Enabled]

LAN2 Option ROM Support [Enabled]
Configuration options: [Disabled] [Enabled]

Intel LAN3 Enable [Enabled]
Allows you to enable or disable Intel® LAN3 function. Configuration options: [Disabled] [Enabled]

LAN3 Option ROM Support [Enabled]
Configuration options: [Disabled] [Enabled]
Intel LAN4 Enable [Enabled]
Allows you to enable or disable Intel® LAN4 function. Configuration options: [Disabled] [Enabled]

LAN4 Option ROM Support [Enabled]
Configuration options: [Disabled] [Enabled]
5.4.8 USB Configuration

Legacy USB Support [Enabled]
- Allows you to enable or disable Legacy USB device support.
- Configuration options: [Enabled] [Disabled] [Auto]

USB3.0 Support [Enabled]
- This item enables or disables USB3.0 (XHCI) Controller support.
- Configuration options: [Disabled] [Enabled]

XHCI Hand-off [Enabled]
- This is a workaround for OSes without XHCI ownership change should be claimed by XHCI driver.
- Configuration options: [Disabled] [Enabled]

EHCI Hand-off [Disabled]
- This is a workaround for OSes without EHCI. Ownership change should be claimed by EHCI driver.
- Configuration options: [Disabled] [Enabled]

USB hardware delays and time-outs

<table>
<thead>
<tr>
<th>Item</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB transfer time-out</td>
<td>[1 sec] [5 sec] [10 sec] [20 sec]</td>
</tr>
<tr>
<td>Device reset time-out</td>
<td>[10 sec] [20 sec] [30 sec] [40 sec]</td>
</tr>
</tbody>
</table>

Device reset time-out [20 sec]
- USB mass storage device start unit command time-out.
- Configuration options: [10 sec] [20 sec] [30 sec] [40 sec]
USB Ports Configuration

<table>
<thead>
<tr>
<th>EHCI Controller 1</th>
<th>[Enabled]</th>
<th>Enable/disable USB 2.0 (EHCI) Support.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHCI Controller 2</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>USB Port1</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>USB Port2</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>USB Port3</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>USB Port4</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>USB Port5</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>USB Port6</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>USB Port10</td>
<td>[Enabled]</td>
<td></td>
</tr>
</tbody>
</table>

→←: Select Screen
↑↓: Select Item
Enter: Select Item
F1: General Help
F2: Previous Values
F5: Optimized Defaults
F10: Save & Exit
ESC: Exit

EHCI Controller 1/2 [Enabled]
Allows you to enable or disable USB (EHCI) Support.
Configuration options: [Disabled] [Enabled]

USB Port 1 and 2 [Enabled]
Allows you to enable or disable rear USB #1 and #2.
Configuration options: [Disabled] [Enabled]

USB Port 3 / 4 / 5 / 6 / 10 [Enabled]
Allows you to enable or disable Onboard USB 3 / 4 / 5 / 6 / 10.
Configuration options: [Disabled] [Enabled]

5.4.9 Trusted Computing

<table>
<thead>
<tr>
<th>Configuration</th>
<th>[Enabled]</th>
<th>Allows you to enable or disable BIOS support for security device. O.S. will not show Security Device. TCG EFI protocol and INT1A interface will not be available.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPM Support</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>Current Status Information</td>
<td>No Security Device Found</td>
<td></td>
</tr>
</tbody>
</table>

TPM Support [Enabled]
Allows you to enable or disable the TPM support.
Configuration options: [Disabled] [Enabled]
5.4.10 ACPI Settings

<table>
<thead>
<tr>
<th>ACPI Settings</th>
<th>Description</th>
<th>Configuration options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable ACPI Auto Configuration</td>
<td>Allows you to enable or disable BIOS ACPI Auto Configuration.</td>
<td>[Disabled] [Enabled]</td>
</tr>
<tr>
<td>Enabled Hibernation</td>
<td></td>
<td>[Enabled]</td>
</tr>
<tr>
<td>ACPI Sleep State</td>
<td></td>
<td>[S1 (CPU Stop Clock)]</td>
</tr>
<tr>
<td>Lock Legacy Resources</td>
<td></td>
<td>[Disabled]</td>
</tr>
</tbody>
</table>

Enable ACPI Auto Configuration [Disabled]

Allows you to enable or disable BIOS ACPI Auto Configuration.
Configuration options: [Disabled] [Enabled]

The following item appears only when you set Enable ACPI Auto Configuration to [Disabled].

Enable Hibernation [Enabled]

Allows you to enable or disable system ability to Hibernate (OS/S4 sleep state).
This option may be not effective with some OS.
Configuration options: [Disabled] [Enabled]

ACPI Sleep State [S1 (CPU Stop Clock)]

Allows you to set the ACPI Sleep State.
Configuration options: [Suspend Disabled] [S1 (CPU Stop Clock)] [S3 (Suspend to RAM)]

Lock Legacy Resources [Disabled]

Allows you to enable or disable Lock Legacy Resources.
Configuration options: [Disabled] [Enabled]
5.4.11 WHEA Configuration

WHEA Support [Enabled]

Allows you to enable or disable the Windows Hardware Error Architecture support. Configuration options: [Disabled] [Enabled]

5.4.12 APM setting

Restore AC Power Loss [Last State]

When set to [Power Off], the system goes into off state after an AC power loss. When set to [Power On], the system will reboot after an AC power loss. When set to [Last State], the system goes into either off or on state, whatever the system state was before the AC power loss. Configuration options: [Power Off] [Power On] [Last State]

Power On By PCIE [Disabled]

[Disabled] Disables the PCIE devices to generate a wake event.

[Enabled] Enables the PCIE devices to generate a wake event.

Power On By RTC [Disabled]

[Disabled] Disables RTC to generate a wake event.

[Enabled] When set to [Enabled], the items RTC Alarm Date (Days) and Hour/Minute/Second will become user-configurable with set values.
5.4.13 Serial Port Console Redirection

COM1

Console Redirection [Disabled]

Allows you to enable or disable the console redirection feature.
Configuration options: [Disabled] [Enabled]

The following item appears only when you set **Console Redirection** to [Enabled].

Console Redirection Settings

This item becomes configurable only when you enable the **Console Redirection** item. The settings specify how the host computer and the remote computer (which the user is using) will exchange data. Both computers should have the same or compatible settings.

Terminal Type [VT-UTF8]

Allows you to set the terminal type.
- [VT100] ASCII char set.
- [VT100+] Extends VT100 to support color, function keys, et.
- [VT-UTF8] Uses UTF8 encoding to map Unicode chars onto 1 or more bytes
- [ANSI] Extended ASCII char set

Bits per second [57600]

Selects serial port transmission speed. The speed must be matched on the other side. Long or noisy lines may require lower speeds.
Configuration options: [96000] [192000] [384000] [576000] [115200]
Data Bits [8]
Configuration options: [7] [8]

Parity [None]
A parity bit can be sent with the data bits to detect some transmission errors. [Mark] and [Space] parity do not allow for error detection.
[None] None
[Even] parity bit is 0 if the num of 1’s in the data bits is even
[Odd] parity bit is 0 if num of 1’s in the data bits is odd
[Mark] parity bit is always 1
[Space] parity bit is always 0

Stop Bits [1]
Stop bits indicate the end of a serial data packet. (A start bit indicates the beginning.) The standard setting is 1 stop bit. Communication with slow devices may require more than 1 stop bit. Configuration options: [1] [2]

Flow Control [Hardware RTS/CTS]
Flow control can prevent data loss from buffer overflow. When sending data, if the receiving buffers are full, a “stop” signal can be sent to stop the data flow. Once the buffers are empty, a “start” signal can be sent to re-start the flow. Hardware flow control uses two wires to send start/stop signals.
Configuration options: [None] [Hardware RTS/CTS]

Recorder Mode [Disabled]
With this mode enabled only text will be sent. This is to capture Terminal data.
Configuration options: [Disabled] [Enabled]

Legacy OS Redirction Resolution [80x24]
Configures the number of rows and columns supported on legacy OS.
Configuration options: [80x24] [80x25]

COM2

Console Redirection [Enabled]
Allows you to enable or disable the console redirection feature.
Configuration options: [Disabled] [Enabled]

Console Redirection Settings
Please refer to the description of the **Console Redirection Settings** item under COM1 for details.
Serial Port for Out-of-Band Management/
Windows Emergency Management Services (EMS)

Console Redirection [Disabled]
Allows you to enable or disable the console redirection feature.
Configuration options: [Disabled] [Enabled]

The following item appears only when you set Console Redirection to [Enabled].

Console Redirection Settings

Out-of-Band Mgmt Port [COM1]
Microsoft Windows Emergency Management Services (EMS) allow for remote management of a Windows Server OS through a serial port.
Configuration options: [COM1] [COM2]

Terminal Type [VT-UTF8]
Microsoft Windows Emergency Management Services (EMS) allow for remote management of a Windows Server OS through a serial port.
Configuration options: [VT100] [VT100+] [VT-UTF8] [ANSI]

Bits per second [115200]
Microsoft Windows Emergency Management Services (EMS) allow for remote management of a Windows Server OS through a serial port.
Configuration options: [9600] [19200] [57600] [115200]

Flow Control [None]
Microsoft Windows Emergency Management Services (EMS) allow for remote management of a Windows Server OS through a serial port.
Configuration options: [VT100] [Mone] [Software Xon/Xoff]
5.4.14 ME Subsystem

Intel ME Subsystem Configuration
- ME BIOS Interface Version: 1.2
- ME Version: 2.1.5.64
- ME FW Status Value: 0xf0345
- ME FW State: SPS ME FW Active
- ME FW Operation State: M0 without UMA
- ME FW Error Code: No Error
- ME Ext FW Status value: 0x39006301
- ME FW SKU Information: SiEn NM

ME Subsystem Help.

→←: Select Screen
↑↓: Select Item
Enter: Select Item
F1: General Help
F2: Previous Values
F5: Optimized Defaults
F10: Save & Exit
ESC: Exit

5.4.15 Onboard Device Configuration

Serial Port 1/2 Configuration

Serial Port Configuration
- Serial Port: [Enabled]
- Device Settings: IO=3F8h; IRQ=4
- Device Mode: [Standard Serial Port...]

Set Parameters of serial Port 1(COM1).

Asmedia USB 3.0 Controller [Enabled]
Asmedia USB 3.0 Battery Charging Support [Enabled]
5.4.16 Runtime Error Logging

Runtime Error Logging Support [Disabled]
This item allows you to enable or disable Runtime Error Logging Support. Configuration options: [Disabled] [Enabled]

PCI Error Logging Support [Disabled]
Allows you to enable or disable PCI Error Logging. Configuration options: [Disabled] [Enabled].
5.5 Server Mgmt menu

The Server Mgmt menu displays the server mgmt status, and allows you to change the settings.

The Server Mgmt menu appears only when you install ASMB card on the motherboard.

<table>
<thead>
<tr>
<th>BMC Firmware: x.xx</th>
<th>Wait for BMC response for specified timeout In PILOTII, BMC starts at the same time when BIOS starts during AC power ON. It takes around 30 seconds to initialize Host to BMC interfaces.</th>
</tr>
</thead>
<tbody>
<tr>
<td>O/S Watchdog Timer [Disabled]</td>
<td>If enabled, starts a BIOS timer which can only be shut off by Intel Management Software after the OS loads. Helps determine that the OS sucessfully loaded or follows the O/S Boot Watchdog Timer Policy. Configuration options: [Enabled] [Disabled]</td>
</tr>
<tr>
<td>O/S Wtd Timer Timeout [10 minutes]</td>
<td>Allows you to configure the length of the O/S Watchdog Timer. Not available if O/S Boot Watchdog Timer is disabled. Configuration options: [5 minutes] [10 minutes] [15 minutes] [20 minutes]</td>
</tr>
<tr>
<td>O/S Wtd Timer Policy [Reset]</td>
<td>Allows you to configure how the system should respond if the OS Boot Watchdog Timer expires. Not available if O/S Boot Watchdog Timer is disabled. Configuration options: [Do Nothing] [Reset] [Power Down]</td>
</tr>
</tbody>
</table>
5.5.1 System Event Log

Enabling/Disabling Options

| SEL Components | [Disabled] |

Erasing Settings

| Erase SEL | [No] |
| When SEL is Full | [Do Nothing] |

Note: All values changed here do not take effect until computer is restarted.

SEL Components [Disabled]

Allows you to enable or disable all features of system Event Logging during boot.
Configuration options: [Disabled] [Enabled]

• The following items appears only when you set SEL Components to [Enabled].
• All values changed here do not take effect until computer is restarted.

Erase SEL [No]

Allows you to choose options for erasing SEL.
Configuration options: [No] [Yes, On next reset] [Yes, On every reset]

When SEL is Full [Do Nothing]

Allows you to choose options for reactions to a full SEL.
Configuration options: [Do Nothing] [Erase Immediately]
5.5.2 BMC network configuration

BMC network configuration

Select to configure LAN channel parameters statically or dynamically (by BIOS or BMC). Unspecified option will not modify any BMC network parameters during BIOS phase.

Configuration Address source [Previous State]

Select to configure LAN channel parameters statically or dynamically (by BIOS or BMC). Unspecified option will not modify any BMC network parameters during BIOS phase.

Configuration options: [Previous State] [Static Mode] [DHCP Mode]

The following items appears only when you set **Configuration Address source** to [Static Mode].

- **Station IP address [0.0.0.0]**
 Allows you to input Station IP address.

- **Subnet mask [0.0.0.0]**
 Allows you to input Subnet mask.

- **Gateway IP address [0.0.0.0]**
 Allows you to input Gateway IP address.
5.6 Event Logs menu

The Event Logs allows you to change or view the event log settings.

![Event Logs menu](image)

5.6.1 Change Smbios Event Log Settings

Press <Enter> to change the Smbios Event Log configuration.

![Change Smbios Event Log Settings](image)

Enabling/Disabling Options

- **Smbios Event Log** [Enabled]
- **Erasing Settings** [No]
- **When Log is Full** [Do Nothing]

Smbios Event Log Standard Settings

- **Log System Boot Event** [Disabled]
- **MECI** 1
- **METW** 60

Custom Option

- **Log OEM Codes** [Enabled]
- **Convert OEM Codes** [Disabled]

Note: All values changed here do not take effect until computer is restarted.

All values changed here do not take effect until computer is restarted.

Enabling/Disabling Options

Smbios Event Log [Enabled]

Change this to enable or disable all features of Smbios Event Logging during boot. Configuration options: [Disabled] [Enabled]
Erasing Settings

Erase Event Log [No]
Choose options for erasing Smbios Event Log. Erasing is done prior to any logging activation during reset.
Configuration options: [No] [Yes, Next reset] [Yes, Every reset]

When Log is Full [Do Nothing]
Allows you to choose options for reactions to a full Smbios Event Log.
Configuration options: [Do Nothing] [Erase Immediately]

Smbios Event Log Standard Settings

Log System Boot Event [Disabled]
Allows you to choose options to enable/disable logging of System boot event.
Configuration options: [Enabled] [Disabled]

MECI [1]
Multiple Event Count Increment (MECI). The number of occurrences of a duplicate event that must pass before the multiplt-event counter associated with the log entry is updated, specified as a numeric value in the range 1 to 255.

METW [60]
Multiple Event Time Windows (METW). The number of minutes which must pass between duplicate log entries which utilize a multiple-event counter. The value ranges from 0 to 99 minutes.

Custom Option

Log OEM Codes [Enabled]
Enable or disable the logging of EFI Status Codes as OEM Codes (if not already converted to legacy).
Configuration options: [Disabled] [Enabled]

Convert OEM Codes [Disabled]
Enable or disable the converting of EFI Status Codes to Standard Smbios Types (Not all may be translated).
Configuration options: [Disabled] [Enabled]

View Smbios Event Log
Press <Enter> to view all smbios event logs.

View System Event Log
Press <Enter> to view all system event logs.
5.7 Boot menu

The Boot menu items allow you to change the system boot options.

<table>
<thead>
<tr>
<th>Boot Configuration</th>
<th>Setup Prompt Timeout</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bootup NumLock State</td>
<td>[On]</td>
</tr>
<tr>
<td>Full Screen Logo</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>CSM16 Module Version</td>
<td>07.67</td>
<td></td>
</tr>
<tr>
<td>GateA20 Active</td>
<td>[Upon Request]</td>
<td></td>
</tr>
<tr>
<td>Option ROM Messages</td>
<td>[Force BIOS]</td>
<td></td>
</tr>
<tr>
<td>Interrupt 19 Capture</td>
<td>[Enabled]</td>
<td></td>
</tr>
<tr>
<td>Boot Device Seeking</td>
<td>[Endless PXE]</td>
<td></td>
</tr>
<tr>
<td>UEFI Boot</td>
<td>[Disabled]</td>
<td></td>
</tr>
<tr>
<td>Boot Option Priorities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boot Option #1</td>
<td>[SATA P2: ASUS]</td>
<td></td>
</tr>
<tr>
<td>Boot Option #2</td>
<td>[SATA P3: WDC WD80]</td>
<td></td>
</tr>
<tr>
<td>Boot Option #3</td>
<td>[AMI Virtual Floppy]</td>
<td></td>
</tr>
<tr>
<td>Boot Option #4</td>
<td>[IBA GE Slot 0700 v]</td>
<td></td>
</tr>
<tr>
<td>CD/DVD ROM Drive BBS Priorities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard Drive BBS Priorities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floppy Drive BBS Priorities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Device BBS Priorities</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setup Prompt Timeout [xx]
Use the <+> and <-> keys to adjust the number of seconds to wait for setup activation key.

Bootup NumLock State [On]
Allows you to select the power-on state for the NumLock.
Configuration options: [Off] [On]

Full Screen Logo [Enabled]
Allows you to enable or disable the full screen logo display feature.
Configuration options: [Disabled] [Enabled]

GateA20 Active [Upon Request]
[Upon Request] GA20 can be disabled using BIOS services.
[Always] Do not allow disable GA20; this option useful when any RT code is executed above 1MB.

Option ROM Messages [Force BIOS]
Allows you to set the display mode for Options ROM.
Configuration options: [Force BIOS] [Keep Current]
Interrupt 19 Capture [Enabled]
Allows Option ROMs to trap interrupt 19.
Configuration options: [Disabled] [Enabled]

Boot Device Seeking [Endless PXE]
[Endless PXE] Continuous seek remote boot image until boot image found or user abort (press Ctrl+Alt+Del).
[Normal] Seek remote boot image once then stop.

UEFI Boot [Disabled]
Allows you to enable or disable UEFI Boot.
Configuration options: [Disabled] [Enabled]

Boot Option Priorities
These items specify the boot device priority sequence from the available devices. The number of device items that appears on the screen depends on the number of devices installed in the system.

- To select the boot device during system startup, press <F8> when ASUS Logo appears.
- To access Windows OS in Safe Mode, please press <F8> after POST.

Set the booting order of network devices.

Boot Option #1/#2/#3/#4 [SATA P2: ASUS ...]
Configuration options: [SATA P2: ASUS...] [SATA P3: WDC WD80...] [AMI Virtual Floppy...] [IBA GE Slot 0700 v...]

CD/DVD ROM Drive BBS Priorities
Hard Drive BBS Priorities
Floppy Drive BBS Priorities
Network Device BBS Priorities
These items appear only when you connect SATA ODD or hard drive to the SATA ports and allow you to set the booting order of the SATA devices.
5.8 Monitor menu

The Monitor menu displays the system temperature/power status, and allows you to change the fan settings.

<table>
<thead>
<tr>
<th>CPU1 Temperature</th>
<th>54.0°C/129.2°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU2 Temperature</td>
<td>N/A</td>
</tr>
<tr>
<td>CPU3 Temperature</td>
<td>N/A</td>
</tr>
<tr>
<td>CPU4 Temperature</td>
<td>N/A</td>
</tr>
<tr>
<td>CPU FAN1 Speed</td>
<td>5378 RPM</td>
</tr>
<tr>
<td>CPU FAN2 Speed</td>
<td>N/A</td>
</tr>
<tr>
<td>FRNT FAN1 Speed</td>
<td>N/A</td>
</tr>
<tr>
<td>FRNT FAN2 Speed</td>
<td>N/A</td>
</tr>
<tr>
<td>FRNT FAN3 Speed</td>
<td>N/A</td>
</tr>
<tr>
<td>FRNT FAN4 Speed</td>
<td>N/A</td>
</tr>
<tr>
<td>FRNT FAN5 Speed</td>
<td>N/A</td>
</tr>
<tr>
<td>+VTT_CPU</td>
<td>+1.026 V</td>
</tr>
<tr>
<td>VCORE1</td>
<td>+0.996 V</td>
</tr>
<tr>
<td>VCORE2</td>
<td>+0.996 V</td>
</tr>
<tr>
<td>VCORE3</td>
<td>+0.852 V</td>
</tr>
<tr>
<td>VCORE4</td>
<td>+0.866 V</td>
</tr>
<tr>
<td>+VDDQ_CPU1</td>
<td>+1.556 V</td>
</tr>
<tr>
<td>+VDDQ_CPU2</td>
<td>N/A</td>
</tr>
<tr>
<td>+VDDQ_CPU3</td>
<td>N/A</td>
</tr>
<tr>
<td>+VDDQ_CPU4</td>
<td>N/A</td>
</tr>
<tr>
<td>+5VSB</td>
<td>+4.460 V</td>
</tr>
<tr>
<td>+12V</td>
<td>+4.996 V</td>
</tr>
<tr>
<td>+3.3V</td>
<td>+11.592 V</td>
</tr>
<tr>
<td>+3.3VSB</td>
<td>+3.276 V</td>
</tr>
</tbody>
</table>

Scroll down to display the following items:

- VBAT +3.168 V
- FAN Speed Control [Generic Node]

CPU 1 / 2 / 3 / 4 Temperature [xxx°C/xxx°F]
The onboard hardware monitor automatically detects and displays the CPU and motherboard component temperatures.

CPU FAN1/2 Speed; FRNT FAN1–5 Speed [xxxx RPM] or [N/A]
The onboard hardware monitor automatically detects and displays the speed of CPU fans, front fans in rotations per minute (RPM). If the fan is not connected to the motherboard, the field shows N/A.
+VTT_CPU Voltage, VCORE1/2 Voltage, +VDDQ_AB_CPU1 Voltage, +VDDQ_CD_CPU1 Voltage, +VDDQ_EF_CPU2 Voltage, +VDDQ_GH_CPU2 Voltage, +5VSB Voltage, +5V Voltage, +12V Voltage, +3.3V Voltage, VBAT Voltage, +3.3VSB Voltage

The onboard hardware monitor automatically detects the voltage output through the onboard voltage regulators.

FAN Speed Control [Generic Mode]

Allows you to configure the ASUS Smart Fan feature that smartly adjusts the fan speeds for more efficient system operation.

Configuration options: [Generic Mode] [High Speed Mode] [Full Speed Mode]

5.9 Security menu

The Security menu items allow you to change the system security settings.

<table>
<thead>
<tr>
<th>Password Description</th>
<th>Set Setup Administrator Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>If ONLY the Administrator's password is set, then this only limits access to Setup and is only asked for when entering Setup</td>
<td></td>
</tr>
<tr>
<td>If ONLY the User’s password is set, then this is a power on password and must be entered to boot or enter Setup. In Setup the User will have Administrator rights</td>
<td></td>
</tr>
<tr>
<td>The password length must be within the following range:</td>
<td></td>
</tr>
<tr>
<td>Minimum length 3</td>
<td></td>
</tr>
<tr>
<td>Maximum length 20</td>
<td></td>
</tr>
</tbody>
</table>

Administrator Password

User Password

- If you have forgotten your BIOS password, erase the CMOS Real Time Clock (RTC) RAM to clear the BIOS password. See section 4.2 JUMPERS for information on how to erase the RTC RAM.
- The Administrator or User Password items on top of the screen show the default Not Installed. After you set a password, these items show Installed.
Administrator Password
If you have set an administrator password, we recommend that you enter the administrator password for accessing the system. Otherwise, you might be able to see or change only selected fields in the BIOS setup program.

To set an administrator password:
1. Select the **Administrator Password** item and press <Enter>.
2. From the **Create New Password** box, key in a password, then press <Enter>.
3. Confirm the password when prompted.

To change an administrator password:
1. Select the **Administrator Password** item and press <Enter>.
2. From the **Enter Current Password** box, key in the current password, then press <Enter>.
3. From the **Create New Password** box, key in a new password, then press <Enter>.
4. Confirm the password when prompted.

To clear the administrator password, follow the same steps as in changing an administrator password, but press <Enter> when prompted to create/confirm the password. After you clear the password, the **Administrator Password** item on top of the screen shows **Not Installed**.

User Password
If you have set a user password, you must enter the user password for accessing the system. The **User Password** item on top of the screen shows the default **Not Installed**. After you set a password, this item shows **Installed**.

To set a user password:
1. Select the **User Password** item and press <Enter>.
2. From the **Create New Password** box, key in a password, then press <Enter>.
3. Confirm the password when prompted.

To change a user password:
1. Select the **User Password** item and press <Enter>.
2. From the **Enter Current Password** box, key in the current password, then press <Enter>.
3. From the **Create New Password** box, key in a new password, then press <Enter>.
4. Confirm the password when prompted.
To clear the user password, follow the same steps as in changing a user password, but press <Enter> when prompted to create/confirm the password. After you clear the password, the **User Password** item on top of the screen shows **Not Installed**.

5.10 Tool menu
The Tool menu items allow you to configure options for special functions. Select an item then press <Enter> to display the submenu.

ASUS EZ Flash 2 Utility

Allows you to run ASUS EZ Flash BIOS ROM Utility when you press <Enter>. Check section **5.1.2 ASUS EZ Flash 2 Utility** for details.

5.11 Exit menu
The Exit menu items allow you to save or discard your changes to the BIOS items.

Pressing <Esc> does not immediately exit this menu. Select one of the options from this menu or <F10> from the legend bar to exit.

Boot Override
These items displays the available devices. The device items that appears on the screen depends on the number of devices installed in the system. Click an item to start booting from the selected device.

Launch EFI Shell from filesystem device
Attempts to launch EFI Shell application (shellx64.efi) from one of the available filesystem devices.

Discard Changes & Exit
This option allows you to exit the Setup program without saving your changes. When you select this option or if you press <Esc>, a confirmation window appears. Select Yes to discard changes and exit.

Save Changes & Reset
Once you are finished making your selections, choose this option from the Exit menu to ensure the values you selected are saved. When you select this option or if you press <F10>, a confirmation window appears. Select Yes to save changes and exit.

Discard Changes & Reset
This option allows you to reset the Setup program without saving your changes. When you select this option, a confirmation window appears. Select Yes to discard changes and reset.

Restore Defaults
This option allows you to restore/load defaults values for all the setup options. When you select this option, a confirmation window appears. Select Yes to load optimized defaults.
This chapter provides instructions for setting up, creating and configuring RAID sets using the available utilities.
Chapter 6: RAID configuration

6.1 Setting up RAID

The motherboard supports the following SATA RAID solutions:

- **LSI MegaRAID software RAID Configuration Utility** with RAID 0, RAID 1, and RAID 10 support (for both Linux and Windows OS).
- **Intel Rapid Storage Technology enterprise SCU / SATA Option ROM Utility** with RAID 0, RAID 1, RAID 10, and RAID 5 support (for Windows OS only).

6.1.1 RAID definitions

RAID 0 (*Data striping*) optimizes two identical hard disk drives to read and write data in parallel, interleaved stacks. Two hard disks perform the same work as a single drive but at a sustained data transfer rate, double that of a single disk alone, thus improving data access and storage. Use of two new identical hard disk drives is required for this setup.

RAID 1 (*Data mirroring*) copies and maintains an identical image of data from one drive to a second drive. If one drive fails, the disk array management software directs all applications to the surviving drive as it contains a complete copy of the data in the other drive. This RAID configuration provides data protection and increases fault tolerance to the entire system. Use two new drives or use an existing drive and a new drive for this setup. The new drive must be of the same size or larger than the existing drive.

RAID 1E (*Enhanced RAID 1*) has a striped layout with each stripe unit having a secondary (or alternate) copy stored on a different disk. You can use three or more hard disk drives for this configuration.

RAID 10 is data striping and data mirroring combined without parity (redundancy data) having to be calculated and written. With the RAID 10 configuration you get all the benefits of both RAID 0 and RAID 1 configurations. Use four new hard disk drives or use an existing drive and three new drives for this setup.

RAID 5 stripes both data and parity information across three or more hard disk drives. Among the advantages of RAID 5 configuration include better HDD performance, fault tolerance, and higher storage capacity. The RAID 5 configuration is best suited for transaction processing, relational database applications, enterprise resource planning, and other business systems. Use a minimum of three identical hard disk drives for this setup.

- If you want to boot the system from a hard disk drive included in a created RAID set, copy first the RAID driver from the support DVD to a floppy disk before you install an operating system to the selected hard disk drive.
- Please refer to chapter 2 for how to select the RAID configuration utility. Move the jumper to choose between LSI MegaRAID and Intel® Rapid RAID.
6.1.2 Installing hard disk drives

The motherboard supports Serial ATA for RAID set configuration. For optimal performance, install identical drives of the same model and capacity when creating a disk array.

To install the SATA hard disks for RAID configuration:

1. Install the SATA hard disks into the drive bays following the instructions in the system user guide.
2. Connect a SATA signal cable to the signal connector at the back of each drive and to the SATA connector on the motherboard.
3. Connect a SATA power cable to the power connector on each drive.

6.1.3 Setting the RAID item in BIOS

You must set the RAID item in the BIOS Setup before you can create a RAID set from SATA hard disk drives attached to the SATA connectors supported by the Intel® C602-A chipset. To do this:

1. Enter the BIOS Setup during POST.
2. Go to the Advanced Menu > PCH SATA Configuration and PCH SCU RAID, then press <Enter>.
3. Set SATA Mode to [RAID Mode]
4. Press <F10> to save your changes and exit the BIOS Setup.

Refer to Chapter 5 for details on entering and navigating through the BIOS Setup.

6.1.4 RAID configuration utilities

Depending on the RAID connectors that you use, you can create a RAID set using the utilities embedded in each RAID controller. For example, use the LSI Logic Embedded SATA RAID Setup Utility or the Intel® Rapid Storage Technology if you installed Serial ATA hard disk drives on the Serial ATA connectors supported by the Intel® C602-A chipset.

Refer to the succeeding section for details on how to use the RAID configuration utility.
6.2 LSI Software RAID Configuration Utility

The LSI MegaRAID software RAID configuration utility allows you to create RAID 0, RAID 1, or RAID 10 set(s) from SATA hard disk drives connected to the SATA connectors supported by the motherboard southbridge chip.

To enter the LSI MegaRAID software RAID configuration utility:

1. Turn on the system after installing all the SATA hard disk drives.
2. During POST, the LSI MegaRAID software RAID configuration utility automatically detects the installed SATA hard disk drives and displays any existing RAID set(s). Press <Ctrl> + <M> to enter the utility.

- The LSI MegaRAID software RAID configuration utility automatically configures to RAID 1 when the SATA to RAID Mode is enabled.
- The RAID setup screens shown in this section are for reference only and may not exactly match the items on your screen due to the controller version difference.
- When you create RAID sets with the LSI MegaRAID software RAID configuration utility, the boot priority of the SATA optical drive has to be manually adjusted. Otherwise, the system will not boot from the connected SATA ODD.

3. The utility main window appears. Use the arrow keys to select an option from the Management Menu and then press <Enter>. Refer to the Management Menu descriptions on the next page.

At the bottom of the screen is the legend box. The keys on the legend box allow you to navigate through the setup menu options or execute commands. The keys on the legend box vary according to the menu level.
6.2.1 Creating a RAID set

The LSI Software RAID Configuration Utility allows you to create a RAID 0, RAID 1, or RAID 10 set using two types of configurations: **Easy** and **New**.

In **Easy Configuration**, the virtual drive parameters are set automatically.

In **New Configuration**, you manually set the virtual drive parameters.

Using Easy Configuration

To create a RAID set using the **Easy Configuration** option:

1. From the **Management Menu**, select **Configure > Easy Configuration**, and then press <Enter>.
2. The **ARRAY SELECTION MENU** displays the available drives connected to the SATA ports. Use the up/down arrow keys to select the drives you want to include in the RAID set, and then press <Space>. When selected, the drive indicator changes from **READY** to **ONLIN A[X]-[Y]**, where X is the array number, and Y is the drive number.

 - The information of the selected hard disk drive displays at the bottom of the screen.
 - You need at least two identical hard disk drives when creating a RAID 1 set.
 - You need at least four identical hard disk drives when creating a RAID 10 set.

3. Select all the drives required for the RAID set, and then press <F10> to configure array setting.

4. Press <Space> to select the configurable array.
5. Press <F10> again, the virtual drive information appears including a **Virtual Drive** menu that allows you to change the virtual drive parameters.

<table>
<thead>
<tr>
<th>LD</th>
<th>RAID</th>
<th>Size</th>
<th>#Stripes</th>
<th>StripSz</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>148.580GB</td>
<td>2</td>
<td>64 KB</td>
<td>ONLINE</td>
</tr>
</tbody>
</table>

Virtual Drive 0
RAID = 1
Units= MB
Size = 152146MB
DWC = Off
RA = On
Accept
SPAN = NO

6. Select RAID from the **Virtual Drive** sub-menu, and then press <Enter>.
7. Select the RAID level from the menu, and then press <Enter>.

<table>
<thead>
<tr>
<th>LD</th>
<th>RAID</th>
<th>Size</th>
<th>#Stripes</th>
<th>StripSz</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>148.580GB</td>
<td>2</td>
<td>64 KB</td>
<td>ONLINE</td>
</tr>
</tbody>
</table>

Virtual Drive 0
RAID Level
RAID 0
RAID 1
Units= MB
Size = 152146MB
DWC = Off
RA = On
Accept
SPAN = NO
8. Select **Units** from the **Virtual Drive** sub-menu, and then press <Enter>.

9. Select the units for virtual drive size from the menu, and then press <Enter>.

10. When creating a **RAID 1** or a **RAID 10** set, select **DWC** from the **Virtual Drive** menu, and then press <Enter>.

 When creating a **RAID 0** set, proceed to step 12.

11. Select **On** to enable the **Disk Write Cache** setting, and then press <Enter>.

 Enabling DWC can improve the performance, but with the risk of data loss.
12. When finished setting the selected virtual drive configuration, select **Accept** from the menu, and then press <Enter>.

13. Follow step 2 to 12 to configure additional virtual drives.

14. Press <Esc> to finish RAID configuration. When prompted to save configuration, select **Yes** from the menu, and then press <Enter>.
Using New Configuration

When a RAID set already exists, using the **New Configuration** command erases the existing RAID configuration data. If you do not want to delete the existing RAID set, use the **View/Add Configuration** command to view or create another RAID configuration.

To create a RAID set using the **New Configuration** option

1. From the **Management Menu**, select **Configure > New Configuration**, and then press <Enter>.

2. Follow step 2 to 9 of the previous section: **Using Easy Configuration**.

3. Select **Size** from the **Virtual Drive** menu, and then press <Enter>.

4. Key-in the desired virtual drive size, and then press <Enter>.

5. Follow step 10 to 14 of the previous section: **Using Easy Configuration** to create the RAID set.
6.2.2 Adding or viewing a RAID configuration

You can add a new RAID configuration or view an existing configuration using the View/Add Configuration command.

Adding a new RAID configuration

To add a new RAID configuration:

1. From the Management Menu, select Configure > View/Add Configuration, and then press <Enter>.

2. The ARRAY SELECTION MENU displays the available drives connected to the SATA ports. Select the drive(s) you want to include in the RAID set, then press <Space>. When selected, the drive indicator changes from READY to ONLIN A[X]-[Y], where X is the array number, and Y is the drive number.

3. Follow step 3 to 12 of section 6.2.1 Creating a RAID set: Using Easy Configuration to add a new RAID set.
6.2.3 Initializing the virtual drives

After creating the RAID set(s), you must initialize the virtual drives. You may initialize the virtual drives of a RAID set(s) using the Initialize or Objects command on the Management Menu.

Using the Initialize command

To initialize the virtual drive using the Initialize command

1. From the Management Menu, select Initialize, and then press <Enter>.

2. The screen displays the available RAID set(s) and prompts you to select the virtual drive to initialize. Use the arrow keys to select the virtual drive from the Virtual Drive selection, and then press <Space>.
3. Press <F10> to start initialization. When prompted, select **Yes** from the Initialize? dialog box, and then press <Enter>.

Initializing a virtual drive erases all data on the drive.

4. A progress bar appears on screen. If desired, press <Esc> to abort initialization. When initialization is completed, press <Esc>.

VD 0 Initialization Complete. Press Esc..
Using the Objects command

To initialize the virtual drives using the Objects command

1. From the Management Menu, select Objects > Virtual Drive, and then press <Enter>.

2. Select the virtual drive to initialize from the Virtual Drives sub-menu, and then press <Enter>.
3. Select Initialize from the pop-up menu, and then press <Enter> to start initialization.

4. When prompted, press the <Space> to select Yes from the Initialize? dialog box, and then press <Enter>.

5. A progress bar appears on screen. If desired, press <Esc> to abort initialization. When initialization is completed, press <Esc>.
6.2.4 Rebuilding failed drives

You can manually rebuild failed hard disk drives using the Rebuild command in the Management Menu.

To rebuild a failed hard disk drive

1. From the Management Menu, select Rebuild, and then press <Enter>.

2. The PHYSICAL DRIVES SELECTION MENU displays the available drives connected to the SATA ports. Select the drive you want to rebuild, and then press <Space>.
3. After selecting the drive to rebuild, press <F10>. When prompted, press <Y> to rebuild the drive.

4. When rebuild is complete, press any key to continue.
6.2.5 Checking the drives for data consistency

You can check and verify the accuracy of data redundancy in the selected virtual drive. The utility can automatically detect and/or detect and correct any differences in data redundancy depending on the selected option in the Objects > Adapter menu.

The Check Consistency command is available only for virtual drives included in a RAID 1 or RAID 10 set.

Using the Check Consistency Command

To check data consistency using the Check Consistency command

1. From the Management Menu, select Check Consistency, and then press <Enter>.

2. The screen displays the available RAID set(s) and prompts you to select the virtual drive to check. Press <Space> to select the virtual drive from the Virtual Drive sub-menu, and then press <F10>.
3. When prompted, use the arrow keys to select Yes from the **Consistency Check?** dialog box, and then press <Enter>.

 ![Image of Consistency Check dialog box]

 A progress bar appears on screen.

4. While checking the disk consistency, press <Esc> to display the following options.
 - **Stop** - Stops the consistency check. The utility stores the percentage of disk checked, and when you restart checking, it continues from the last percentage completed rather than from zero percent.
 - **Continue** - Continues the consistency check.
 - **Abort** - Aborts the consistency check. When you restart checking, it continues from zero percent.

5. When checking is complete, press any key to continue.
Using the Objects command
To check data consistency using the Objects command

1. From the Management Menu, select Objects, and then select Virtual Drive from the sub-menu.
2. Use the arrow keys to select the virtual drive you want to check, and then press <Enter>.
3. Select Check Consistency from the pop-up menu, and then press <Enter>.
4. When prompted, use the arrow keys to select Yes from the dialog box to check the drive.
5. When checking is complete, press any key to continue.
6.2.6 Deleting a RAID configuration

To delete a RAID configuration

1. From the Management Menu, select Configure > Clear Configuration, and then press <Enter>.

2. When prompted, use the arrow keys to select Yes from the Clear Configuration? dialog box, and then press <Enter>.

 The utility clears all the current array(s).

3. Press any key to continue.
6.2.7 Selecting the boot drive from a RAID set

You must have created a new RAID configuration before you can select the boot drive from a RAID set. See section 6.2.1 Creating a RAID set: Using New Configuration for details.

To select the boot drive from a RAID set

1. From the Management Menu, select Configure > Select Boot Drive, and then press <Enter>.

2. When prompted, use the arrow keys to select the bootable virtual drive from the list, then press <Enter>.

3. The virtual drive is selected as boot drive. Press any key to continue.
6.2.8 Enabling WriteCache

You may manually enable the RAID controller’s WriteCache option after creating a RAID set to improve the data transmission performance.

When you enable WriteCache, you may lose data when a power interruption occurs while transmitting or exchanging data among the drives.

The WriteCache function is recommended for RAID 1 and RAID 10 sets.

To enable WriteCache

1. From the Management Menu, select Objects > Adapter, select an existing adapter, and then press <Enter> to display the adapter properties.
2. Select Disk WC, and then press <Enter> to turn on the option.

3. From the Management Menu, select Objects > Virtual Drive, select an existing adapter and press <Enter>. Select View/Update Parameters and press <Enter> to display the adapter properties.
4. Select Disk WC, and then press <Enter> to turn on the option.
5. When finished, press any key to continue.
6.3 Intel® Rapid Storage Technology enterprise SCU/SATA Option ROM Utility

The Intel® Rapid Storage Technology enterprise SCU / SATA Option ROM utility allows you to create RAID 0, RAID 1, RAID 10 (RAID 1+0), and RAID 5 set(s) from Serial ATA hard disk drives that are connected to the Serial ATA connectors supported by the Southbridge.

You can create RAID mode by use of onboard AHCI SATA ports.

To use onboard SATA ports:

1. Install all the Serial ATA hard disk drives.
2. Turning on the system. During POST, press,Del. to enter BIOS. Go to Advanced Menu > PCH SATA Configuration > SATA Mode, then press <Enter>.
3. Set SATA Mode to RAID Mode and save, then reboot system.
4. During POST, press <Ctrl+I> to display the utility main menu.

To use SCU SATA ports:

1. Install all the hard disk drives.
2. Turn on the system.
3. Confirm all the SATA hard disk drives you installed are correctly displayed, then reboot system.
4. During POST, press <Ctrl+I> to display the utility main menu.
To enter the Intel® Rapid Storage Technology enterprise SCU option ROM / SATA option ROM utility:

1. Install all the Serial ATA hard disk drives.
2. Turn on the system.
3. During POST, press <Ctrl+I> to display the utility main menu.

The utility supports maximum four hard disk drives for RAID configuration.

The navigation keys at the bottom of the screen allow you to move through the menus and select the menu options.

The RAID BIOS setup screens shown in this section are for reference only and may not exactly match the items on your screen.
6.3.1 Creating a RAID set

To create a RAID set

1. From the utility main menu, select **1. Create RAID Volume** and press <Enter>. The following screen appears.

2. Enter a name for the RAID set and press <Enter>.

3. When the **RAID Level** item is selected, press the up/down arrow key to select a RAID level to create, and then press <Enter>.

4. When the **Disks** item is selected, press <Enter> to select the hard disk drives you want to include in the RAID set. The **SELECT DISKS** screen appears.

5. Use the up/down arrow key to select a drive, and then press <Space> to select. A small triangle marks the selected drive. Press <Enter> after completing your selection.
6. Use the up/down arrow keys to select the stripe size for the RAID array (for RAID 0, 10 and 5 only), and then press <Enter>. The available stripe size values range from 4 KB to 128 KB. The following are typical values:
 RAID 0: 128KB
 RAID 10: 64KB
 RAID 5: 64KB

 We recommend a lower stripe size for server systems, and a higher stripe size for multimedia computer systems used mainly for audio and video editing.

7. When the **Capacity** item is selected, enter the RAID volume capacity that you want and press <Enter>. The default value indicates the maximum allowed capacity.

8. When the **Create Volume** item is selected, press <Enter>. The following warning message appears.

 WARNING: ALL DATA ON SELECTED DISKS WILL BE LOST.
 Are you sure you want to create this volume? (Y/N):

9. Press <Y> to create the RAID volume and return to the main menu, or <N> to go back to the **CREATE VOLUME** menu.

6.3.2 Creating a Recovery set

To create a recovery set:

1. From the utility main menu, select **1. Create RAID Volume** and press <Enter>. The following screen appears.
2. Enter a name for the recovery set and press <Enter>.
3. When the **RAID Level** item is selected, press the up/down arrow keys to select **Recovery**, and then press <Enter>.
4. When the **Disks** item is selected, press <Enter> to select the hard disk drives you want to include in the recovery set. The **SELECT DISKS** screen appears.

 ![SELECT DISKS]

 Port Drive Model Serial # Size Status
 1 ST3300656SS 37VN00009846BAJJL 279.3GB Non-RAID Disk
 2 ST3300656SS 397600009846U3EY3 279.3GB Non-RAID Disk
 3 ST3300656SS GWC50000991756G6 279.3GB Non-RAID Disk

 Select 1 Master and 1 Recovery disk to create volume.

 [[↑↓]-Prev/Next [TAB]-M(aster) [SPACE]-R(ecovery) [ENTER]-Done

5. Use the up/down arrow keys to select a drive, press <TAB> to select a Master disk, and then press <SPACE> to select a Recovery disk. A small triangle marks the selected drive. Press <Enter> after completing your selection.
6. When the **Sync** item is selected, use the up/down arrow keys to select a sync option that you want and press <Enter>.
7. When the **Create Volume** item is selected, press <Enter>. The following warning message appears.

 ![WARNING]

 WARNING: ALL DATA ON SELECTED DISKS WILL BE LOST.
 Are you sure you want to create this volume? (Y/N):

8. Press <Y> to create the recovery set and return to the main menu, or <N> to go back to the **CREATE VOLUME** menu.

 If a recovery set is created, you cannot add more RAID sets even when you have more non-RAID disks installed in your system.
6.3.3 Deleting a RAID set

Take caution when deleting a RAID set. You will lose all data on the hard disk drives when you delete a RAID set.

To delete a RAID set:

1. From the utility main menu, select **2. Delete RAID Volume** and press <Enter>. The following screen appears.

 ![DELETE VOLUME MENU](image)

 Deleting a volume will reset the disks to non-RAID.

 WARNING: ALL DISK DATA WILL BE DELETED
 (This does not apply to Recovery volumes)

 ![DELETE VOLUME VERIFICATION](image)

 Are you sure you want to delete volume “Volume0”? (Y/N):

2. Use the up/down arrow keys to select the RAID set you want to delete, and then press . The following warning message appears.

 ![DELETE VOLUME VERIFICATION](image)

 Are you sure you want to delete volume “Volume0”? (Y/N):

3. Press <Y> to delete the RAID set and return to the utility main menu, or press <N> to return to the DELETE VOLUME menu.
6.3.4 Resetting disks to Non-RAID

Take caution before you reset a RAID volume hard disk drive to non-RAID. Resetting a RAID volume hard disk drive deletes all internal RAID structure on the drive.

To reset a RAID set hard disk drive:

1. From the utility main menu, select **3. Reset Disks to Non-RAID** and press <Enter>. The following screen appears.

 ![Reset RAID Data Screen]

 Resetting RAID disk will remove its RAID structures and revert it to a non-RAID disk.

 Port Drive Model Serial # Size Status
 0 ST3300656SS HWAS0000991753TR 279.3GB Member Disk
 1 ST3300656SS 37VN0000986RAJ1 279.3GB Member Disk

 Select the disks that should be reset.

 ![Select Disks]

2. Use the up/down arrow keys to select the RAID set drive(s) you want to reset, and then press <Space> to select.

3. Press <Enter> to reset the RAID set drive(s). A confirmation message appears.

4. Press <Y> to reset the drive(s) or press <N> to return to the utility main menu.
6.3.5 Exiting the Intel® Rapid Storage Technology utility

To exit the utility:

1. From the utility main menu, select 4. Exit, and then press <Enter>. The following warning message appears.

 ![CONFIRM EXIT]

 Are you sure you want to exit? (Y/N):

2. Press <Y> to exit or press <N> to return to the utility main menu.

6.3.6 Rebuilding the RAID

This option is only for the RAID 1 set.

Rebuilding the RAID with other non-RAID disk

If any of the SATA hard disk drives included in the RAID 1 array failed, the system displays the status of the RAID volume as “Degraded” during POST. You can rebuild the RAID array with other installed non-RAID disks.

To rebuild the RAID with other non-RAID disk:

1. At the prompt, press <Ctrl> + <I> to enter the Intel Rapid Storage Technology option ROM utility.

2. If there is a non-RAID SATA Hard Disk available, the utility will prompt to rebuild the RAID. Press <Enter>, and then use up/down arrow keys to select the destination disk or press <ESC> to exit.

 ![DEGRADED VOLUME DETECTED]
 "Degraded" volume and disk available for rebuilding detected. Selecting a disk initiates a rebuild. Rebuild completes in the operating system.

 Select the port of destination disk for rebuilding (ESC to exit):
 Port Drive Model Serial # Size
 X XXXXXXXXXXX XXXXXXXX XX.XGB

 [↑↓]-Previous/Next [ENTER]-Select [ESC]-Exit

 Select a destination disk with the same size as the original hard disk.
3. The utility immediately starts rebuilding after the disk is selected. The status of the degraded RAID volume is changed to “Rebuild”.

4. Exit Intel Rapid Storage Technology and reboot the system.

5. Under Microsoft® Windows OS, select Start > Programs > Intel Rapid Storage > Intel Rapid Storage Console or click the Intel Rapid Storage Technology tray icon to load the Intel Rapid Storage Manager utility.

6. From the View menu, select Advanced Mode to display the details of the Intel Rapid Storage Console.

7. From the Volumes view option, select RAID volume to view the rebuilding status. When finished, the status is changed to “Normal”.

Rebuilding the RAID with a new hard disk

If any of the SATA hard disk drives included in the RAID array failed, the system displays the status of the RAID volume as “Degraded” during POST. You may replace the disk drive and rebuild the RAID array.

To rebuild the RAID with a new hard disk:

1. Remove the failed SATA hard disk and install a new SATA hard disk of the same specification into the same SATA Port.

 Select a destination disk with the same size as the original hard disk.

2. Reboot the system and then follow the steps in section **Rebuilding the RAID with other non-RAID disk**.
6.3.7 Setting the Boot array in the BIOS Setup Utility

You can set the boot priority sequence in the BIOS for your RAID arrays when creating multi-RAID using the Intel® Rapid Storage Technology.

To set the boot array in the BIOS:

Set at least one of the arrays bootable to boot from the hard disk.

1. Reboot the system and press to enter the BIOS setup utility during POST.
2. Go to the Boot menu and select the boot option priority.
3. Use up/down arrow keys to select the boot priority and press <Enter>. See section 5.7 Boot menu for details.
4. From the Exit menu, select Save Changes & Exit, then press <Enter>.
5. When the confirmation window appears, select Yes, then press <Enter>.
6.4 **Intel® Rapid Storage Technology enterprise Utility (Windows)**

The Intel® Rapid Storage Technology enterprise utility allows you to create RAID 0, RAID 1, RAID 10 (RAID 1+0), and RAID 5 set(s) from Serial ATA hard disk drives that are connected to the Serial ATA connectors supported by the Southbridge.

To enter the Intel® Rapid Storage Technology enterprise SCU option ROM utility under Windows operating system:

1. Turn on the system to windows desktop.
2. Click the Intel® Rapid Storage Technology enterprise icon to display the main menu.

Your storage system is configured for data protection, increased performance and optimal data storage capacity. You can further optimize your storage system by creating additional volumes.

You can click **Rescan** to re-scan any attached hard disks.
6.4.1 Creating a RAID set

To create a RAID set

1. From the utility main menu, select Create Volume and select volume type.
2. Then click Next.

3. Enter a name for the RAID set, then select the array disks.
4. Select Volume Size tab, you can drag the bar to decide the volume size.
5. Then click Next.

- If you hard disk with existing data and you don't want to keep data from one of the selected disks, choose NO in next column (If displayed).
- If you want to Enable volume write-back cache or Initialize volume, you can click Advanced tab to select.
6. Confirm volume creation, than click **Create Volume** to continue.

 This process could take a while depending on the number and size of the disks. You can continue using other applications during this time.

 When display **Volume Creation Complete** message, you can click **OK** to finish.

 You still need to partition your new volume using Windows Disk Management before adding any data.

 When you are finished, you will see the following screen in **Volumes** field and you can change related items in the **Volume Properties** field.
6.4.2 Change Volume Type

When you are finished to create a RAID set, you can view or change related items in the Volume Properties field.

According to the following steps to change the type in Volume Properties:

1. Click the SAS array items you want to change in Volumes field.
2. From the Volume Properties field, select Type: RAID 1 Change type.

3. You can change the Name, Select the new volume type, and Select additional disks to include in the new volume if needed.

4. Then select the Data stripe size for the RAID array (for RAID 0, 10 and 5 only), and then click OK. The available stripe size values range from 4 KB to 128 KB. The following are typical values:
 - RAID 0: 128KB
 - RAID 10: 64KB
 - RAID 5: 64KB

We recommend a lower stripe size for server systems, and a higher stripe size for multimedia computer systems used mainly for audio and video editing.
6.4.3 Delete volume

Take caution when deleting a volume. You will lose all data on the hard disk drives. Back up data before continuing.

To delete a volume:

1. From the utility main menu, select the volume (exp. Volume_0000) in Volumes field you want to delete.

2. Then select Delete volume in Volume Properties field. The following screen appears.

3. Click Yes to delete the volume and return to the utility main menu, or click No to return to the main menu.
6.4.4 Preferences

System Preferences
Allow you set to show the notification area icon and show system information, warning, or errors here.

E-Mail Preferences
Allow you set to sent e-mail of the following events:
- Storage system information
- Storage system warnings
- Storage system errors
This chapter provides instructions for installing the necessary drivers for different system components.
7.1 RAID driver installation

After creating the RAID sets for your server system, you are now ready to install an operating system to the independent hard disk drive or bootable array. This part provides the instructions on how to install the RAID controller drivers during OS installation.

7.1.1 Creating a RAID driver disk

The system does not include a floppy drive. You have to use a USB floppy drive when creating a SATA RAID driver disk.

If you have created RAID sets with the LSI Software RAID configuration utility, the boot priority of the SATA optical disk drive has to be manually adjusted. Otherwise, the system will not boot from the connected SATA ODD.

A floppy disk with the RAID driver is required when installing Windows® XP / Server 2003 or Linux operating system on a hard disk drive that is included in a RAID set. You can create a RAID driver disk in DOS (using the Makedisk application in the support DVD).

To create a RAID driver disk in DOS environment

1. Place the motherboard support DVD in the optical drive.
2. Restart the computer, and then enter the BIOS Setup.
3. Select the optical drive as the first boot priority to boot from the support DVD. Save your changes, and then exit the BIOS Setup.
4. Restart the computer. The Makedisk menu appears.

5. Use the arrow keys to select the type of RAID driver disk you want to create and press <Enter> to enter the sub-menu.

C60x INTEL RAID Driver

Windows 32 bit (AHCI / AHCI RAID)
Windows 64 bit (AHCI / AHCI RAID)
Windows 32 bit (SCU RAID)
Windows 64 bit (SCU RAID)
Back
Exit
6. Locate the RAID driver and place a blank, high-density floppy disk to the floppy disk drive.
7. Press <Enter>.
8. Follow screen instructions to create the driver disk.

To create a RAID driver disk in Windows® environment
1. Start Windows®.
2. Place the motherboard support DVD into the optical drive.
3. Go to the Make disk menu, and then select the type of RAID driver disk you want to create.
4. Insert a floppy disk into the USB floppy disk drive.
5. Follow succeeding screen instructions to complete the process.

 Write-protect the floppy disk to avoid computer virus infection.

To create a RAID driver disk in Red Hat® Enterprise Linux server environment
1. Insert a blank formatted high-density floppy disk to the USB floppy disk drive.
2. Type `dd if=XXX.img of=/dev/fd0` to decompress the file into the floppy disk from the following path in the support DVD:

 For LSI MegaRAID Driver
   ```bash
   \Drivers\C60x LSI RAID\Driver\makedisk\Linux
   ```
3. Eject the floppy disk.
7.1.2 Installing the RAID controller driver

During Windows® Server 2008 OS installation
To install the RAID controller driver when installing Windows® Server 2008 OS

2. When prompted to choose a type of installation, click Custom (advanced).
3. Click Load Driver.
4. A message appears, reminding you to insert the installation media containing the driver of the RAID controller driver. If you have only one optical drive installed in your system, eject the Windows OS installation disc and replace with the motherboard Support DVD into the optical drive. Click **Browse** to continue.

5. Locate the driver in the corresponding folder of the Support DVD, and then click **OK** to continue.

6. Select the RAID controller driver you need from the list and click **Next**.

7. When the system finishes loading the RAID driver, replace the motherboard Support DVD with the Windows Server installation disc. Select the drive to install Windows and click **Next**.

8. Setup then proceeds with the OS installation. Follow screen instructions to continue.
Red Hat® Enterprise Linux OS 5.6

To install the LSI MegaRAID controller driver when installing Red Hat® Enterprise OS:

1. Boot the system from the Red Hat® OS installation CD.
2. At the `boot:`, type `linux dd noprobe=ata1 noprobe=ata2...`, then press <Enter>.
 The number of ata varies with the hard disk drive number you have when building a RAID set. For example, if you want to build a RAID set with 6 hard disk drives, type command line: `linux dd noprobe=ata1 noprobe=ata2 noprobe=ata3 noprobe=ata4 noprobe=ata5 noprobe=ata6`.

3. Select Yes using the <Tab> key when asked if you have the driver disk, then press <Enter>.

4. Insert the Red Hat® Enterprise RAID driver disk to the USB floppy disk drive, select OK, then press <Enter>.

 The drivers for the RAID card are installed to the system.
5. When asked if you will load additional RAID controller drivers, select No, then press <Enter>.

6. Follow the onscreen instructions to finish the OS installation.

7. When the installation is completed, DO NOT click Reboot. Press <Ctrl> + <Alt> + <F2> to switch to the command-line interface from graphic user interface.

8. Type the following commands when using a Legacy floppy.

 mkdir /mnt/driver
 mount /dev/fd0 /mnt/driver
 cd /mnt/driver
 sh replace_ahci.sh
 reboot
Red Hat® Enterprise Linux OS 6.1
To install the LSI MegaRAID controller driver when installing Red Hat® Enterprise OS:

1. Boot the system from the Red Hat® OS installation CD.
2. Press <Tab> to edit options.

3. While booting from DVD, press <ESC> to give the third party driver. Enter the following command at the boot: `Linux dd blacklist=isci blacklist=ahci nodmraid`, then press <ENTER>.
4. Select **Yes** using the <Tab> key when asked if you have the driver disk, then press <Enter>.

5. You have multiple devices which could serve as source for a driver disk. Choose one you like to use and select **OK**, then press <Enter>.
6. Insert the Red Hat® Enterprise RAID driver disk to the USB floppy disk drive, select OK, then press <Enter>.

The drivers for the RAID card are installed to the system.

7. When asked if you will load additional RAID controller drivers, select No, then press <Enter>.

8. Follow the onscreen instructions to finish the OS installation.
Preparing the Linux Driver

Ensure that there is another computer with a Linux-based OS to create the RAID driver. When creating the RAID driver, you may refer to the examples below which uses a 64bit SUSE Linux system to create a 64bit RAID driver for SUSE11 sp1.

1. Copy the image file into the Linux system.
 Example: `megasr-15.00.0120.2012-1-sles11-ga-x86_64.img`

2. Create a folder.
 Example: `image`

3. Mount the image file into the image folder using this command format:
 `mount -o loop [image file name] image`
 Example: `mount -o loop megasr-15-15.00.0120.2012-1-sles11-ga-x86_64.img image`

4. Copy the contents of the image directory, labeled as `01`, into a FAT32 USB drive.

5. Rename the `01` folder to `CD Image`.
Installing SUSE 11 Linux OS

To install the LSI MegaRAID controller driver when installing SUSE Linux Enterprise Server OS:

1. Boot the system from the SUSE OS installation CD.
2. Use the arrow keys to select Installation from the Boot Options menu.

3. Press <F6>, then select Yes from the menu. Press <Enter>.
4. Use the USB drive to provide the third-party driver during the OS installation. Type the command `brokenmodules=ahci` in Boot Options field, and press <Enter>.

5. When below screen appears, select the USB floppy disk drive (sda) as the driver update medium. Select OK, then press <Enter>.
6. The drivers for the RAID controller are installed to the system as shown below.

```
Please choose the Driver Update medium.

sda: USB Floppy
sr0: CD-ROM, ASUS DRW-1612BLT
sdb: Disk, LSI MEGA RAID
sd3: Disk, LSI MEGA RAID Console
other device
```

7. Select **Back** and follow the onscreen instructions to finish the installation.
7.2 **Intel® chipset device software installation**

This section provides the instructions on how to install the Intel® chipset device software on the system.

You need to manually install the Intel® chipset device software on a Windows operating system.

To install the Intel® chipset device software:

1. Restart the computer, and then log on with **Administrator** privileges.
2. Insert the motherboard/system support DVD to the optical drive. The support DVD automatically displays the **Drivers** menu if Autorun is enabled in your computer.

 If Autorun is NOT enabled in your computer, browse the contents of the support DVD to locate the file **ASSETUP.EXE** from the **BIN** folder. Double-click the **ASSETUP.EXE** to run the support DVD.

3. Click the item **Intel Chipset Device Software** from the menu.

4. The **Intel(R) Chipset Device Software** window appears. Click **Next** to start installation.
5. Select **Yes** to accept the terms of the **License Agreement** and continue the process.

6. Read the **Readme File Information** and press **Next** to continue the installation.

7. Toggle **Yes, I want to restart the computer now** and click **Finish** to complete the setup process.
7.3 Intel® Network Connections Software installation

This section provides the instructions on how to install the Intel® Network Connections Software on the system.

You need to manually install the Intel® Network Connections Software on a Windows® operating system. To install the Intel® Network Connections Software:

1. Restart the computer, and then log on with Administrator privileges.
2. Insert the motherboard/system support DVD to the optical drive. The support DVD automatically displays the Drivers menu if Autorun is enabled in your computer.
 - Windows® automatically detects the LAN controllers and displays a New Hardware Found window. Click Cancel to close this window.
 - If Autorun is NOT enabled in your computer, browse the contents of the support DVD to locate the file ASSETUP.EXE from the BIN folder. Double-click the ASSETUP.EXE to run the DVD.

3. Click the Intel® Network Connections Software to begin installation.

4. Click Install Drivers and Software option to begin installation.
5. Click **Next** when the Intel(R) Network Connections–InstallShield Wizard window appears.

![Intel(R) Network Connections–InstallShield Wizard window](image)

6. Toggle **I accept the terms in the license agreement** and click **Next** to continue.

![License Agreement](image)

7. Click the **Intel(R) PROSet for Windows Device Manager** box, and then click **Next** to start the installation.

![Setup Options](image)
8. Follow the screen instructions to complete installation.

9. When finished, press **Finish** to continue.
7.4 VGA driver installation

This section provides the instructions on how to install the ASPEED Video Graphics Adapter (VGA) driver.

You need to manually install the ASPEED VGA driver on a Windows® operating system.

To install the ASPEED VGA driver:

1. Restart the computer, and then log on with Administrator privileges.
2. Insert the motherboard/system support DVD to the optical drive. The support DVD automatically displays the Drivers menu if Autorun is enabled in your computer.

If Autorun is NOT enabled in your computer, browse the contents of the support DVD to locate the file ASSETUP.EXE from the BIN folder. Double-click the ASSETUP.EXE to run the support DVD.

3. Click the Aspeed AST2300 Display Driver to begin installation.

4. When the ASPEED Graphics installation wizard appears, click Next to start the installation.
5. Toggle **I accept the terms in the license agreement** and click **Next** to continue.

6. Enter the user information and click **Next** to continue.

7. Select a setup type and click **Next** to continue.
8. Click **Install** to start driver installation.

![Install dialog box](image)

9. When the installation completes, click **Finish** to restart your computer before using the program.

![Finish dialog box](image)
![Restart confirmation dialog box](image)
7.5 Intel® C600 Series Chipset SATA RAID Drivers

This section provides the instructions on how to install the Intel® C600 Series Chipset Drivers on the system.

You need to manually install the Intel® C600 Series Chipset SATA RAID (SATA mode) Drivers on a Windows operating system.

To install the drivers:

1. Restart the computer, and then log on with Administrator privileges.
2. Insert the motherboard/system support DVD to the optical drive. The support DVD automatically displays the Drivers menu if Autorun is enabled in your computer.

 If Autorun is NOT enabled in your computer, browse the contents of the support DVD to locate the file ASSETUP.EXE from the BIN folder. Double-click the ASSETUP.EXE to run the support DVD.

3. Click the item Intel® C600 Series Chipset SATA RAID Drivers from the menu, and then follow the onscreen instructions to complete the installation.
Chapter 7: Driver installation

7.6 Microsoft .NET Framework 3.5 SP1

This section provides the instructions on how to install the Microsoft .NET Framework 3.5 SP1 software on the system.

You need to manually install the Intel® Microsoft .NET Framework 3.5 SP1 software on a Windows operating system.

To install the drivers:

1. Restart the computer, and then log on with Administrator privileges.
2. Insert the motherboard/system support DVD to the optical drive. The support DVD automatically displays the Drivers menu if Autorun is enabled in your computer.

 If Autorun is NOT enabled in your computer, browse the contents of the support DVD to locate the file ASSETUP.EXE from the BIN folder. Double-click the ASSETUP.EXE to run the support DVD.

3. Click the item Microsoft .NET Framework 3.5 SP1 software from the menu, and then follow the onscreen instructions to complete the installation.
7.7 Intel® Rapid Storage Technology enterprise 3.0 installation

This section provides the instructions on how to install the Intel® Rapid Storage Technology enterprise 3.0 on the system.

You need to manually install the Intel® Rapid Storage Technology enterprise 3.0 utility on a Windows® operating system.

To install the Intel® Rapid Storage Technology enterprise 3.0 utility:

1. Restart the computer, and then log on with Administrator privileges.
2. Insert the motherboard/system support DVD to the optical drive. The support DVD automatically displays the Drivers menu if Autorun is enabled in your computer.

 If Autorun is NOT enabled in your computer, browse the contents of the support DVD to locate the file ASSETUP.EXE from the BIN folder. Double-click the ASSETUP.EXE to run the support DVD.

3. Click the Intel® Rapid Storage Technology enterprise 3.0 to begin installation.

4. When the Welcome to the Setup Program appears, click Next to start the installation.
5. Read the **Warning** message and click **Next** to continue.

6. Read the **License Agreement** and click **Yes** to continue.

7. Read the **Readme File Information** and click **Next** to continue.
8. After completing the installation, click **Next** to complete the setup process.

9. Select **Yes, I want to restart my computer now** and click **Finish** to restart your computer before using the program.
7.8 **Intel® I350 Gigabit Adapters Driver installation**

This section provides the instructions on how to install Intel® I350 Gigabit Adapters Driver.

To install the Intel® I350 Gigabit Adapters Driver on a Windows® OS:

1. Restart the computer, and then log on with Administrator privileges.
2. Insert the motherboard/system support DVD to the optical drive. The DVD automatically displays the Drivers menu if Autorun is enabled in your computer.

 If Autorun is NOT enabled in your computer, browse the contents of the support DVD to locate the file AUTORUN.EXE and double-click the AUTORUN.EXE and follow step 4 to run the installation.

3. Click **Intel® I350 Gigabit Adapters Driver**.
4. When the **Intel® PRO Network Connections – InstallShield Wizard** window appears, click **Next** to start the installation.

![InstallShield Wizard Window](image1)

5. Click **I accept the terms in the license agreement** and then click **Next** to continue.

![License Agreement Window](image2)
6. Select the programs you want to install and click **Next** to continue.

7. Click **Install** to start the installation.
8. The programs you select are being installed.

9. Click **Finish** to finish the installation.
7.9 Management applications and utilities installation

The support DVD that came with the motherboard package contains the drivers, management applications, and utilities that you can install to avail all motherboard features.

The contents of the support DVD are subject to change at any time without notice. Visit the ASUS website (www.asus.com) for updates.

7.9.1 Running the support DVD

Place the support DVD to the optical drive. The DVD automatically displays the Drivers menu if Autorun is enabled in your computer.

If Autorun is NOT enabled in your computer, browse the contents of the support DVD to locate the file ASSETUP.EXE from the BIN folder. Double-click the ASSETUP.EXE to run the support DVD.

7.9.2 Drivers menu

The Drivers menu shows the available device drivers if the system detects installed devices. Install the necessary drivers to activate the devices.

The screen display and driver options vary under different operating system versions.
7.9.3 Utilities menu

The Utilities menu displays the software applications and utilities that the motherboard supports. Click an item to install.

7.9.4 Make disk menu

The Make disk menu contains items to create the Intel RAID driver disks.

7.9.5 Contact information

Click the Contact tab to display the ASUS contact information. You can also find this information on the inside front cover of this user guide.
ASUS contact information

ASUSTeK COMPUTER INC.
Address 15 Li-Te Road, Peitou, Taipei, Taiwan 11259
Telephone +886-2-2894-3447
Fax +886-2-2890-7798
E-mail info@asus.com.tw
Web site http://www.asus.com

Technical Support
Telephone +86-21-38429911
Fax +86-21-58668722 ext: 9101
Online Support http://support.asus.com/techserv/techserv.aspx

ASUSTeK COMPUTER INC. (Taiwan)
Address 15 Li-Te Road, Peitou, Taipei, Taiwan 11259
Telephone +886-2-2894-3447
Fax +886-2-2890-7798
E-mail info@asus.com.tw
Web site http://tw.asus.com

Technical Support
Telephone +886-2-2894-3447 (0800-093-456)
Online Support http://support.asus.com/techserv/techserv.aspx

ASUSTeK COMPUTER INC. (China)
Address No.508, Chundong Road, Xinzhuang Industrial Zone, Minhang District, Shanghai, China.
Telephone +86-21-5442-1616
Fax +86-21-5442-0099
Web site http://cn.asus.com

Technical Support
Telephone +86-21-3407-4610 (800-820-6655)
Online Support http://support.asus.com/techserv/techserv.aspx
ASUS contact information

ASUS COMPUTER INTERNATIONAL (America)
Address 800 Corporate Way, Fremont, CA 94539, USA
Fax +1-510-608-4555
Web site http://usa.asus.com

Technical Support
Support fax +1-812-284-0883
General support +1-812-282-2787
Online support http://support.asus.com/techserv/techserv.aspx

ASUS COMPUTER GmbH (Germany and Austria)
Address Harkort Str. 21-23, 40880 Ratingen, Germany
Fax +49-2102-959911
Web site http://www.asus.de
Online contact http://www.asus.de/sales

Technical Support
Telephone +49-1805-010923
Support Fax +49-2102-959911
Online support http://support.asus.com/techserv/techserv.aspx